This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The excluded point topology. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | epttop | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∈ ( TopOn ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab | ⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ↔ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ) ) | |
| 2 | eleq2 | ⊢ ( 𝑥 = ∪ 𝑦 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ ∪ 𝑦 ) ) | |
| 3 | eqeq1 | ⊢ ( 𝑥 = ∪ 𝑦 → ( 𝑥 = 𝐴 ↔ ∪ 𝑦 = 𝐴 ) ) | |
| 4 | 2 3 | imbi12d | ⊢ ( 𝑥 = ∪ 𝑦 → ( ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ↔ ( 𝑃 ∈ ∪ 𝑦 → ∪ 𝑦 = 𝐴 ) ) ) |
| 5 | simprl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ) ) → 𝑦 ⊆ 𝒫 𝐴 ) | |
| 6 | sspwuni | ⊢ ( 𝑦 ⊆ 𝒫 𝐴 ↔ ∪ 𝑦 ⊆ 𝐴 ) | |
| 7 | 5 6 | sylib | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ) ) → ∪ 𝑦 ⊆ 𝐴 ) |
| 8 | vuniex | ⊢ ∪ 𝑦 ∈ V | |
| 9 | 8 | elpw | ⊢ ( ∪ 𝑦 ∈ 𝒫 𝐴 ↔ ∪ 𝑦 ⊆ 𝐴 ) |
| 10 | 7 9 | sylibr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ) ) → ∪ 𝑦 ∈ 𝒫 𝐴 ) |
| 11 | eluni2 | ⊢ ( 𝑃 ∈ ∪ 𝑦 ↔ ∃ 𝑥 ∈ 𝑦 𝑃 ∈ 𝑥 ) | |
| 12 | r19.29 | ⊢ ( ( ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ∧ ∃ 𝑥 ∈ 𝑦 𝑃 ∈ 𝑥 ) → ∃ 𝑥 ∈ 𝑦 ( ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ∧ 𝑃 ∈ 𝑥 ) ) | |
| 13 | simpr | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ) → ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ) | |
| 14 | 13 | impr | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ∧ 𝑃 ∈ 𝑥 ) ) → 𝑥 = 𝐴 ) |
| 15 | elssuni | ⊢ ( 𝑥 ∈ 𝑦 → 𝑥 ⊆ ∪ 𝑦 ) | |
| 16 | 15 | adantr | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ∧ 𝑃 ∈ 𝑥 ) ) → 𝑥 ⊆ ∪ 𝑦 ) |
| 17 | 14 16 | eqsstrrd | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ∧ 𝑃 ∈ 𝑥 ) ) → 𝐴 ⊆ ∪ 𝑦 ) |
| 18 | 17 | rexlimiva | ⊢ ( ∃ 𝑥 ∈ 𝑦 ( ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ∧ 𝑃 ∈ 𝑥 ) → 𝐴 ⊆ ∪ 𝑦 ) |
| 19 | 12 18 | syl | ⊢ ( ( ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ∧ ∃ 𝑥 ∈ 𝑦 𝑃 ∈ 𝑥 ) → 𝐴 ⊆ ∪ 𝑦 ) |
| 20 | 19 | ex | ⊢ ( ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) → ( ∃ 𝑥 ∈ 𝑦 𝑃 ∈ 𝑥 → 𝐴 ⊆ ∪ 𝑦 ) ) |
| 21 | 20 | ad2antll | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ) ) → ( ∃ 𝑥 ∈ 𝑦 𝑃 ∈ 𝑥 → 𝐴 ⊆ ∪ 𝑦 ) ) |
| 22 | 11 21 | biimtrid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ) ) → ( 𝑃 ∈ ∪ 𝑦 → 𝐴 ⊆ ∪ 𝑦 ) ) |
| 23 | 22 7 | jctild | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ) ) → ( 𝑃 ∈ ∪ 𝑦 → ( ∪ 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦 ) ) ) |
| 24 | eqss | ⊢ ( ∪ 𝑦 = 𝐴 ↔ ( ∪ 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦 ) ) | |
| 25 | 23 24 | imbitrrdi | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ) ) → ( 𝑃 ∈ ∪ 𝑦 → ∪ 𝑦 = 𝐴 ) ) |
| 26 | 4 10 25 | elrabd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ) ) → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) |
| 27 | 26 | ex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ) → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) ) |
| 28 | 1 27 | biimtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) ) |
| 29 | 28 | alrimiv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) ) |
| 30 | inss1 | ⊢ ( 𝑦 ∩ 𝑧 ) ⊆ 𝑦 | |
| 31 | simprll | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) ) → 𝑦 ∈ 𝒫 𝐴 ) | |
| 32 | 31 | elpwid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) ) → 𝑦 ⊆ 𝐴 ) |
| 33 | 30 32 | sstrid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) ) → ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ) |
| 34 | vex | ⊢ 𝑦 ∈ V | |
| 35 | 34 | inex1 | ⊢ ( 𝑦 ∩ 𝑧 ) ∈ V |
| 36 | 35 | elpw | ⊢ ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ↔ ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ) |
| 37 | 33 36 | sylibr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) ) → ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ) |
| 38 | elin | ⊢ ( 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) ↔ ( 𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧 ) ) | |
| 39 | simprlr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) ) → ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) | |
| 40 | simprrr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) ) → ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) | |
| 41 | 39 40 | anim12d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) ) → ( ( 𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧 ) → ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐴 ) ) ) |
| 42 | ineq12 | ⊢ ( ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐴 ) → ( 𝑦 ∩ 𝑧 ) = ( 𝐴 ∩ 𝐴 ) ) | |
| 43 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 44 | 42 43 | eqtrdi | ⊢ ( ( 𝑦 = 𝐴 ∧ 𝑧 = 𝐴 ) → ( 𝑦 ∩ 𝑧 ) = 𝐴 ) |
| 45 | 41 44 | syl6 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) ) → ( ( 𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧 ) → ( 𝑦 ∩ 𝑧 ) = 𝐴 ) ) |
| 46 | 38 45 | biimtrid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) ) → ( 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) → ( 𝑦 ∩ 𝑧 ) = 𝐴 ) ) |
| 47 | 37 46 | jca | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) ) → ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) → ( 𝑦 ∩ 𝑧 ) = 𝐴 ) ) ) |
| 48 | 47 | ex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) → ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) → ( 𝑦 ∩ 𝑧 ) = 𝐴 ) ) ) ) |
| 49 | eleq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦 ) ) | |
| 50 | eqeq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝐴 ↔ 𝑦 = 𝐴 ) ) | |
| 51 | 49 50 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ↔ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ) |
| 52 | 51 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ) |
| 53 | eleq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑧 ) ) | |
| 54 | eqeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝐴 ↔ 𝑧 = 𝐴 ) ) | |
| 55 | 53 54 | imbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ↔ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) |
| 56 | 55 | elrab | ⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ↔ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) |
| 57 | 52 56 | anbi12i | ⊢ ( ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) ↔ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 → 𝑦 = 𝐴 ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 → 𝑧 = 𝐴 ) ) ) ) |
| 58 | eleq2 | ⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) ) ) | |
| 59 | eqeq1 | ⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( 𝑥 = 𝐴 ↔ ( 𝑦 ∩ 𝑧 ) = 𝐴 ) ) | |
| 60 | 58 59 | imbi12d | ⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ↔ ( 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) → ( 𝑦 ∩ 𝑧 ) = 𝐴 ) ) ) |
| 61 | 60 | elrab | ⊢ ( ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ↔ ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) → ( 𝑦 ∩ 𝑧 ) = 𝐴 ) ) ) |
| 62 | 48 57 61 | 3imtr4g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) → ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) ) |
| 63 | 62 | ralrimivv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) |
| 64 | pwexg | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) | |
| 65 | 64 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → 𝒫 𝐴 ∈ V ) |
| 66 | rabexg | ⊢ ( 𝒫 𝐴 ∈ V → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∈ V ) | |
| 67 | 65 66 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∈ V ) |
| 68 | istopg | ⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∈ V → ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∈ Top ↔ ( ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) ) ) | |
| 69 | 67 68 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∈ Top ↔ ( ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) ) ) |
| 70 | 29 63 69 | mpbir2and | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∈ Top ) |
| 71 | eleq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝐴 ) ) | |
| 72 | eqeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝐴 ↔ 𝐴 = 𝐴 ) ) | |
| 73 | 71 72 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) ↔ ( 𝑃 ∈ 𝐴 → 𝐴 = 𝐴 ) ) ) |
| 74 | pwidg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴 ) | |
| 75 | 74 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → 𝐴 ∈ 𝒫 𝐴 ) |
| 76 | eqidd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → 𝐴 = 𝐴 ) | |
| 77 | 76 | a1d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑃 ∈ 𝐴 → 𝐴 = 𝐴 ) ) |
| 78 | 73 75 77 | elrabd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → 𝐴 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) |
| 79 | elssuni | ⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } → 𝐴 ⊆ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) | |
| 80 | 78 79 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → 𝐴 ⊆ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) |
| 81 | ssrab2 | ⊢ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ⊆ 𝒫 𝐴 | |
| 82 | sspwuni | ⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ⊆ 𝒫 𝐴 ↔ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ⊆ 𝐴 ) | |
| 83 | 81 82 | mpbi | ⊢ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ⊆ 𝐴 |
| 84 | 83 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ⊆ 𝐴 ) |
| 85 | 80 84 | eqssd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → 𝐴 = ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) |
| 86 | istopon | ⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∈ ( TopOn ‘ 𝐴 ) ↔ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∈ Top ∧ 𝐴 = ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ) ) | |
| 87 | 70 85 86 | sylanbrc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 → 𝑥 = 𝐴 ) } ∈ ( TopOn ‘ 𝐴 ) ) |