This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number of elements of a finite function restricted to a subset of its domain is equal to the number of elements of that subset. (Contributed by AV, 15-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashres | ⊢ ( ( Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → ( ♯ ‘ ( 𝐴 ↾ 𝐵 ) ) = ( ♯ ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres | ⊢ ( Fun 𝐴 → Fun ( 𝐴 ↾ 𝐵 ) ) | |
| 2 | 1 | 3ad2ant1 | ⊢ ( ( Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → Fun ( 𝐴 ↾ 𝐵 ) ) |
| 3 | finresfin | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ↾ 𝐵 ) ∈ Fin ) | |
| 4 | 3 | 3ad2ant2 | ⊢ ( ( Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → ( 𝐴 ↾ 𝐵 ) ∈ Fin ) |
| 5 | hashfun | ⊢ ( ( 𝐴 ↾ 𝐵 ) ∈ Fin → ( Fun ( 𝐴 ↾ 𝐵 ) ↔ ( ♯ ‘ ( 𝐴 ↾ 𝐵 ) ) = ( ♯ ‘ dom ( 𝐴 ↾ 𝐵 ) ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → ( Fun ( 𝐴 ↾ 𝐵 ) ↔ ( ♯ ‘ ( 𝐴 ↾ 𝐵 ) ) = ( ♯ ‘ dom ( 𝐴 ↾ 𝐵 ) ) ) ) |
| 7 | 2 6 | mpbid | ⊢ ( ( Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → ( ♯ ‘ ( 𝐴 ↾ 𝐵 ) ) = ( ♯ ‘ dom ( 𝐴 ↾ 𝐵 ) ) ) |
| 8 | ssdmres | ⊢ ( 𝐵 ⊆ dom 𝐴 ↔ dom ( 𝐴 ↾ 𝐵 ) = 𝐵 ) | |
| 9 | 8 | biimpi | ⊢ ( 𝐵 ⊆ dom 𝐴 → dom ( 𝐴 ↾ 𝐵 ) = 𝐵 ) |
| 10 | 9 | 3ad2ant3 | ⊢ ( ( Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → dom ( 𝐴 ↾ 𝐵 ) = 𝐵 ) |
| 11 | 10 | fveq2d | ⊢ ( ( Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → ( ♯ ‘ dom ( 𝐴 ↾ 𝐵 ) ) = ( ♯ ‘ 𝐵 ) ) |
| 12 | 7 11 | eqtrd | ⊢ ( ( Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴 ) → ( ♯ ‘ ( 𝐴 ↾ 𝐵 ) ) = ( ♯ ‘ 𝐵 ) ) |