This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite set of sequential integers is disjoint with its predecessor. (Contributed by AV, 24-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzpreddisj | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( { 𝑀 } ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom | ⊢ ( { 𝑀 } ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ { 𝑀 } ) | |
| 2 | 0lt1 | ⊢ 0 < 1 | |
| 3 | 0re | ⊢ 0 ∈ ℝ | |
| 4 | 1re | ⊢ 1 ∈ ℝ | |
| 5 | 3 4 | ltnlei | ⊢ ( 0 < 1 ↔ ¬ 1 ≤ 0 ) |
| 6 | 2 5 | mpbi | ⊢ ¬ 1 ≤ 0 |
| 7 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 8 | 7 | zred | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℝ ) |
| 9 | leaddle0 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 𝑀 + 1 ) ≤ 𝑀 ↔ 1 ≤ 0 ) ) | |
| 10 | 8 4 9 | sylancl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 + 1 ) ≤ 𝑀 ↔ 1 ≤ 0 ) ) |
| 11 | 6 10 | mtbiri | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ¬ ( 𝑀 + 1 ) ≤ 𝑀 ) |
| 12 | 11 | intnanrd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ¬ ( ( 𝑀 + 1 ) ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) |
| 13 | 12 | intnand | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ¬ ( ( ( 𝑀 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ( ( 𝑀 + 1 ) ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ) |
| 14 | elfz2 | ⊢ ( 𝑀 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ↔ ( ( ( 𝑀 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ( ( 𝑀 + 1 ) ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ) | |
| 15 | 13 14 | sylnibr | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ¬ 𝑀 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) |
| 16 | disjsn | ⊢ ( ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ { 𝑀 } ) = ∅ ↔ ¬ 𝑀 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) | |
| 17 | 15 16 | sylibr | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝑀 + 1 ) ... 𝑁 ) ∩ { 𝑀 } ) = ∅ ) |
| 18 | 1 17 | eqtrid | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( { 𝑀 } ∩ ( ( 𝑀 + 1 ) ... 𝑁 ) ) = ∅ ) |