This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertices of a cycle of size 3 are a triangle in a graph. (Contributed by AV, 5-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycl3grtri.g | ⊢ ( 𝜑 → 𝐺 ∈ UPGraph ) | |
| cycl3grtri.c | ⊢ ( 𝜑 → 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) | ||
| cycl3grtri.n | ⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) = 3 ) | ||
| Assertion | cycl3grtri | ⊢ ( 𝜑 → ran 𝑃 ∈ ( GrTriangles ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycl3grtri.g | ⊢ ( 𝜑 → 𝐺 ∈ UPGraph ) | |
| 2 | cycl3grtri.c | ⊢ ( 𝜑 → 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) | |
| 3 | cycl3grtri.n | ⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) = 3 ) | |
| 4 | cyclprop | ⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 5 | tpeq1 | ⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → { 𝑥 , 𝑦 , 𝑧 } = { ( 𝑃 ‘ 0 ) , 𝑦 , 𝑧 } ) | |
| 6 | 5 | eqeq2d | ⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → ( ran 𝑃 = { 𝑥 , 𝑦 , 𝑧 } ↔ ran 𝑃 = { ( 𝑃 ‘ 0 ) , 𝑦 , 𝑧 } ) ) |
| 7 | preq1 | ⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → { 𝑥 , 𝑦 } = { ( 𝑃 ‘ 0 ) , 𝑦 } ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 0 ) , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 9 | preq1 | ⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → { 𝑥 , 𝑧 } = { ( 𝑃 ‘ 0 ) , 𝑧 } ) | |
| 10 | 9 | eleq1d | ⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → ( { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 0 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 11 | 8 10 | 3anbi12d | ⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → ( ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( { ( 𝑃 ‘ 0 ) , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 12 | 6 11 | 3anbi13d | ⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → ( ( ran 𝑃 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ran 𝑃 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) ↔ ( ran 𝑃 = { ( 𝑃 ‘ 0 ) , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ran 𝑃 ) = 3 ∧ ( { ( 𝑃 ‘ 0 ) , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
| 13 | tpeq2 | ⊢ ( 𝑦 = ( 𝑃 ‘ 1 ) → { ( 𝑃 ‘ 0 ) , 𝑦 , 𝑧 } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , 𝑧 } ) | |
| 14 | 13 | eqeq2d | ⊢ ( 𝑦 = ( 𝑃 ‘ 1 ) → ( ran 𝑃 = { ( 𝑃 ‘ 0 ) , 𝑦 , 𝑧 } ↔ ran 𝑃 = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , 𝑧 } ) ) |
| 15 | preq2 | ⊢ ( 𝑦 = ( 𝑃 ‘ 1 ) → { ( 𝑃 ‘ 0 ) , 𝑦 } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) | |
| 16 | 15 | eleq1d | ⊢ ( 𝑦 = ( 𝑃 ‘ 1 ) → ( { ( 𝑃 ‘ 0 ) , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 17 | preq1 | ⊢ ( 𝑦 = ( 𝑃 ‘ 1 ) → { 𝑦 , 𝑧 } = { ( 𝑃 ‘ 1 ) , 𝑧 } ) | |
| 18 | 17 | eleq1d | ⊢ ( 𝑦 = ( 𝑃 ‘ 1 ) → ( { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 1 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 19 | 16 18 | 3anbi13d | ⊢ ( 𝑦 = ( 𝑃 ‘ 1 ) → ( ( { ( 𝑃 ‘ 0 ) , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 20 | 14 19 | 3anbi13d | ⊢ ( 𝑦 = ( 𝑃 ‘ 1 ) → ( ( ran 𝑃 = { ( 𝑃 ‘ 0 ) , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ran 𝑃 ) = 3 ∧ ( { ( 𝑃 ‘ 0 ) , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) ↔ ( ran 𝑃 = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , 𝑧 } ∧ ( ♯ ‘ ran 𝑃 ) = 3 ∧ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
| 21 | tpeq3 | ⊢ ( 𝑧 = ( 𝑃 ‘ 2 ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , 𝑧 } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) | |
| 22 | 21 | eqeq2d | ⊢ ( 𝑧 = ( 𝑃 ‘ 2 ) → ( ran 𝑃 = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , 𝑧 } ↔ ran 𝑃 = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 23 | preq2 | ⊢ ( 𝑧 = ( 𝑃 ‘ 2 ) → { ( 𝑃 ‘ 0 ) , 𝑧 } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ) | |
| 24 | 23 | eleq1d | ⊢ ( 𝑧 = ( 𝑃 ‘ 2 ) → ( { ( 𝑃 ‘ 0 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 25 | preq2 | ⊢ ( 𝑧 = ( 𝑃 ‘ 2 ) → { ( 𝑃 ‘ 1 ) , 𝑧 } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) | |
| 26 | 25 | eleq1d | ⊢ ( 𝑧 = ( 𝑃 ‘ 2 ) → ( { ( 𝑃 ‘ 1 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 27 | 24 26 | 3anbi23d | ⊢ ( 𝑧 = ( 𝑃 ‘ 2 ) → ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 28 | 22 27 | 3anbi13d | ⊢ ( 𝑧 = ( 𝑃 ‘ 2 ) → ( ( ran 𝑃 = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , 𝑧 } ∧ ( ♯ ‘ ran 𝑃 ) = 3 ∧ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) ↔ ( ran 𝑃 = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∧ ( ♯ ‘ ran 𝑃 ) = 3 ∧ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
| 29 | pthiswlk | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 30 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 31 | 30 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 32 | simpl | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) | |
| 33 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 34 | 0elfz | ⊢ ( 3 ∈ ℕ0 → 0 ∈ ( 0 ... 3 ) ) | |
| 35 | 33 34 | ax-mp | ⊢ 0 ∈ ( 0 ... 3 ) |
| 36 | oveq2 | ⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ... 3 ) ) | |
| 37 | 35 36 | eleqtrrid | ⊢ ( ( ♯ ‘ 𝐹 ) = 3 → 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 38 | 37 | ad2antll | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 39 | 32 38 | ffvelcdmd | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 40 | 39 | ex | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 41 | 29 31 40 | 3syl | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 42 | 41 | adantl | ⊢ ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 43 | 42 | imp | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 44 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 45 | 1le3 | ⊢ 1 ≤ 3 | |
| 46 | elfz2nn0 | ⊢ ( 1 ∈ ( 0 ... 3 ) ↔ ( 1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3 ) ) | |
| 47 | 44 33 45 46 | mpbir3an | ⊢ 1 ∈ ( 0 ... 3 ) |
| 48 | 47 36 | eleqtrrid | ⊢ ( ( ♯ ‘ 𝐹 ) = 3 → 1 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 49 | 48 | ad2antll | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → 1 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 50 | 32 49 | ffvelcdmd | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 51 | 50 | ex | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 52 | 29 31 51 | 3syl | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 53 | 52 | adantl | ⊢ ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 54 | 53 | imp | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( 𝑃 ‘ 1 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 55 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 56 | 2re | ⊢ 2 ∈ ℝ | |
| 57 | 3re | ⊢ 3 ∈ ℝ | |
| 58 | 2lt3 | ⊢ 2 < 3 | |
| 59 | 56 57 58 | ltleii | ⊢ 2 ≤ 3 |
| 60 | elfz2nn0 | ⊢ ( 2 ∈ ( 0 ... 3 ) ↔ ( 2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≤ 3 ) ) | |
| 61 | 55 33 59 60 | mpbir3an | ⊢ 2 ∈ ( 0 ... 3 ) |
| 62 | 61 36 | eleqtrrid | ⊢ ( ( ♯ ‘ 𝐹 ) = 3 → 2 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 63 | 62 | ad2antll | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → 2 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 64 | 32 63 | ffvelcdmd | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( 𝑃 ‘ 2 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 65 | 64 | ex | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 𝑃 ‘ 2 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 66 | 29 31 65 | 3syl | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 𝑃 ‘ 2 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 67 | 66 | adantl | ⊢ ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 𝑃 ‘ 2 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 68 | 67 | imp | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( 𝑃 ‘ 2 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 69 | fdm | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → dom 𝑃 = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 70 | elnn0uz | ⊢ ( 3 ∈ ℕ0 ↔ 3 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 71 | 33 70 | mpbi | ⊢ 3 ∈ ( ℤ≥ ‘ 0 ) |
| 72 | fzisfzounsn | ⊢ ( 3 ∈ ( ℤ≥ ‘ 0 ) → ( 0 ... 3 ) = ( ( 0 ..^ 3 ) ∪ { 3 } ) ) | |
| 73 | 71 72 | ax-mp | ⊢ ( 0 ... 3 ) = ( ( 0 ..^ 3 ) ∪ { 3 } ) |
| 74 | fzo0to3tp | ⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } | |
| 75 | 74 | uneq1i | ⊢ ( ( 0 ..^ 3 ) ∪ { 3 } ) = ( { 0 , 1 , 2 } ∪ { 3 } ) |
| 76 | 73 75 | eqtri | ⊢ ( 0 ... 3 ) = ( { 0 , 1 , 2 } ∪ { 3 } ) |
| 77 | 36 76 | eqtrdi | ⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( { 0 , 1 , 2 } ∪ { 3 } ) ) |
| 78 | 77 | adantl | ⊢ ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( { 0 , 1 , 2 } ∪ { 3 } ) ) |
| 79 | 69 78 | sylan9eq | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → dom 𝑃 = ( { 0 , 1 , 2 } ∪ { 3 } ) ) |
| 80 | 79 | imaeq2d | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( 𝑃 “ dom 𝑃 ) = ( 𝑃 “ ( { 0 , 1 , 2 } ∪ { 3 } ) ) ) |
| 81 | imadmrn | ⊢ ( 𝑃 “ dom 𝑃 ) = ran 𝑃 | |
| 82 | imaundi | ⊢ ( 𝑃 “ ( { 0 , 1 , 2 } ∪ { 3 } ) ) = ( ( 𝑃 “ { 0 , 1 , 2 } ) ∪ ( 𝑃 “ { 3 } ) ) | |
| 83 | 80 81 82 | 3eqtr3g | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ran 𝑃 = ( ( 𝑃 “ { 0 , 1 , 2 } ) ∪ ( 𝑃 “ { 3 } ) ) ) |
| 84 | ffn | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 85 | 84 | adantr | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 86 | 85 38 49 63 | fnimatpd | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( 𝑃 “ { 0 , 1 , 2 } ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 87 | nn0fz0 | ⊢ ( 3 ∈ ℕ0 ↔ 3 ∈ ( 0 ... 3 ) ) | |
| 88 | 33 87 | mpbi | ⊢ 3 ∈ ( 0 ... 3 ) |
| 89 | 88 36 | eleqtrrid | ⊢ ( ( ♯ ‘ 𝐹 ) = 3 → 3 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 90 | 89 | adantl | ⊢ ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → 3 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 91 | fnsnfv | ⊢ ( ( 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 3 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → { ( 𝑃 ‘ 3 ) } = ( 𝑃 “ { 3 } ) ) | |
| 92 | 84 90 91 | syl2an | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → { ( 𝑃 ‘ 3 ) } = ( 𝑃 “ { 3 } ) ) |
| 93 | 92 | eqcomd | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( 𝑃 “ { 3 } ) = { ( 𝑃 ‘ 3 ) } ) |
| 94 | 86 93 | uneq12d | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( ( 𝑃 “ { 0 , 1 , 2 } ) ∪ ( 𝑃 “ { 3 } ) ) = ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∪ { ( 𝑃 ‘ 3 ) } ) ) |
| 95 | fveq2 | ⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑃 ‘ 3 ) ) | |
| 96 | 95 | eqeq2d | ⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ) |
| 97 | sneq | ⊢ ( ( 𝑃 ‘ 3 ) = ( 𝑃 ‘ 0 ) → { ( 𝑃 ‘ 3 ) } = { ( 𝑃 ‘ 0 ) } ) | |
| 98 | 97 | eqcoms | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → { ( 𝑃 ‘ 3 ) } = { ( 𝑃 ‘ 0 ) } ) |
| 99 | 98 | uneq2d | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∪ { ( 𝑃 ‘ 3 ) } ) = ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∪ { ( 𝑃 ‘ 0 ) } ) ) |
| 100 | snsstp1 | ⊢ { ( 𝑃 ‘ 0 ) } ⊆ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } | |
| 101 | 100 | a1i | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → { ( 𝑃 ‘ 0 ) } ⊆ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 102 | ssequn2 | ⊢ ( { ( 𝑃 ‘ 0 ) } ⊆ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ↔ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∪ { ( 𝑃 ‘ 0 ) } ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) | |
| 103 | 101 102 | sylib | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∪ { ( 𝑃 ‘ 0 ) } ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 104 | 99 103 | eqtrd | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∪ { ( 𝑃 ‘ 3 ) } ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 105 | 96 104 | biimtrdi | ⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∪ { ( 𝑃 ‘ 3 ) } ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 106 | 105 | impcom | ⊢ ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∪ { ( 𝑃 ‘ 3 ) } ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 107 | 106 | adantl | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∪ { ( 𝑃 ‘ 3 ) } ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 108 | 83 94 107 | 3eqtrd | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ran 𝑃 = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 109 | 108 | ex | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ran 𝑃 = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 110 | 29 31 109 | 3syl | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ran 𝑃 = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 111 | 110 | adantl | ⊢ ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ran 𝑃 = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 112 | 111 | imp | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ran 𝑃 = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 113 | breq2 | ⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( 1 ≤ ( ♯ ‘ 𝐹 ) ↔ 1 ≤ 3 ) ) | |
| 114 | 45 113 | mpbiri | ⊢ ( ( ♯ ‘ 𝐹 ) = 3 → 1 ≤ ( ♯ ‘ 𝐹 ) ) |
| 115 | 114 | ad2antll | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → 1 ≤ ( ♯ ‘ 𝐹 ) ) |
| 116 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) |
| 117 | cyclnumvtx | ⊢ ( ( 1 ≤ ( ♯ ‘ 𝐹 ) ∧ 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 ) → ( ♯ ‘ ran 𝑃 ) = ( ♯ ‘ 𝐹 ) ) | |
| 118 | 115 116 117 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( ♯ ‘ ran 𝑃 ) = ( ♯ ‘ 𝐹 ) ) |
| 119 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( ♯ ‘ 𝐹 ) = 3 ) |
| 120 | 118 119 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( ♯ ‘ ran 𝑃 ) = 3 ) |
| 121 | cycl3grtrilem | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) | |
| 122 | 1 121 | sylanl1 | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 123 | 112 120 122 | 3jca | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( ran 𝑃 = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∧ ( ♯ ‘ ran 𝑃 ) = 3 ∧ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 124 | 12 20 28 43 54 68 123 | 3rspcedvdw | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ∃ 𝑥 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐺 ) ( ran 𝑃 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ran 𝑃 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 125 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 126 | 30 125 | isgrtri | ⊢ ( ran 𝑃 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑦 ∈ ( Vtx ‘ 𝐺 ) ∃ 𝑧 ∈ ( Vtx ‘ 𝐺 ) ( ran 𝑃 = { 𝑥 , 𝑦 , 𝑧 } ∧ ( ♯ ‘ ran 𝑃 ) = 3 ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑥 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑧 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 127 | 124 126 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ran 𝑃 ∈ ( GrTriangles ‘ 𝐺 ) ) |
| 128 | 127 | exp32 | ⊢ ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( ( ♯ ‘ 𝐹 ) = 3 → ran 𝑃 ∈ ( GrTriangles ‘ 𝐺 ) ) ) ) |
| 129 | 128 | com23 | ⊢ ( ( 𝜑 ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ( ( ♯ ‘ 𝐹 ) = 3 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ran 𝑃 ∈ ( GrTriangles ‘ 𝐺 ) ) ) ) |
| 130 | 129 | expcom | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝜑 → ( ( ♯ ‘ 𝐹 ) = 3 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ran 𝑃 ∈ ( GrTriangles ‘ 𝐺 ) ) ) ) ) |
| 131 | 130 | com24 | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( ( ♯ ‘ 𝐹 ) = 3 → ( 𝜑 → ran 𝑃 ∈ ( GrTriangles ‘ 𝐺 ) ) ) ) ) |
| 132 | 131 | imp | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( ♯ ‘ 𝐹 ) = 3 → ( 𝜑 → ran 𝑃 ∈ ( GrTriangles ‘ 𝐺 ) ) ) ) |
| 133 | 4 132 | syl | ⊢ ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ( ( ♯ ‘ 𝐹 ) = 3 → ( 𝜑 → ran 𝑃 ∈ ( GrTriangles ‘ 𝐺 ) ) ) ) |
| 134 | 133 | com13 | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐹 ) = 3 → ( 𝐹 ( Cycles ‘ 𝐺 ) 𝑃 → ran 𝑃 ∈ ( GrTriangles ‘ 𝐺 ) ) ) ) |
| 135 | 3 2 134 | mp2d | ⊢ ( 𝜑 → ran 𝑃 ∈ ( GrTriangles ‘ 𝐺 ) ) |