This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cycl3grtri . (Contributed by AV, 5-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cycl3grtrilem | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pthiswlk | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 2 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 3 | 2 | upgrwlkvtxedg | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 4 | 1 3 | sylan2 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 5 | 4 | adantr | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 6 | oveq2 | ⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 3 ) ) | |
| 7 | fzo0to3tp | ⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } | |
| 8 | 6 7 | eqtrdi | ⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = { 0 , 1 , 2 } ) |
| 9 | 8 | adantl | ⊢ ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = { 0 , 1 , 2 } ) |
| 10 | 9 | adantl | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = { 0 , 1 , 2 } ) |
| 11 | 10 | raleqdv | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑥 ∈ { 0 , 1 , 2 } { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 12 | fveq2 | ⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑃 ‘ 3 ) ) | |
| 13 | 12 | eqeq2d | ⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ) ) |
| 14 | c0ex | ⊢ 0 ∈ V | |
| 15 | 1ex | ⊢ 1 ∈ V | |
| 16 | 2ex | ⊢ 2 ∈ V | |
| 17 | fveq2 | ⊢ ( 𝑥 = 0 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 0 ) ) | |
| 18 | fv0p1e1 | ⊢ ( 𝑥 = 0 → ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 1 ) ) | |
| 19 | 17 18 | preq12d | ⊢ ( 𝑥 = 0 → { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) |
| 20 | 19 | eleq1d | ⊢ ( 𝑥 = 0 → ( { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 21 | fveq2 | ⊢ ( 𝑥 = 1 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 1 ) ) | |
| 22 | oveq1 | ⊢ ( 𝑥 = 1 → ( 𝑥 + 1 ) = ( 1 + 1 ) ) | |
| 23 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 24 | 22 23 | eqtrdi | ⊢ ( 𝑥 = 1 → ( 𝑥 + 1 ) = 2 ) |
| 25 | 24 | fveq2d | ⊢ ( 𝑥 = 1 → ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 2 ) ) |
| 26 | 21 25 | preq12d | ⊢ ( 𝑥 = 1 → { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 27 | 26 | eleq1d | ⊢ ( 𝑥 = 1 → ( { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 28 | fveq2 | ⊢ ( 𝑥 = 2 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 2 ) ) | |
| 29 | oveq1 | ⊢ ( 𝑥 = 2 → ( 𝑥 + 1 ) = ( 2 + 1 ) ) | |
| 30 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 31 | 29 30 | eqtrdi | ⊢ ( 𝑥 = 2 → ( 𝑥 + 1 ) = 3 ) |
| 32 | 31 | fveq2d | ⊢ ( 𝑥 = 2 → ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 3 ) ) |
| 33 | 28 32 | preq12d | ⊢ ( 𝑥 = 2 → { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ) |
| 34 | 33 | eleq1d | ⊢ ( 𝑥 = 2 → ( { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 35 | 14 15 16 20 27 34 | raltp | ⊢ ( ∀ 𝑥 ∈ { 0 , 1 , 2 } { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 36 | simpr1 | ⊢ ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ∧ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) | |
| 37 | preq2 | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ) | |
| 38 | prcom | ⊢ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } | |
| 39 | 37 38 | eqtr3di | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ) |
| 40 | 39 | eleq1d | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → ( { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 41 | 40 | biimpcd | ⊢ ( { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ ( Edg ‘ 𝐺 ) → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 42 | 41 | 3ad2ant3 | ⊢ ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ ( Edg ‘ 𝐺 ) ) → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 43 | 42 | impcom | ⊢ ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ∧ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 44 | simpr2 | ⊢ ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ∧ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) | |
| 45 | 36 43 44 | 3jca | ⊢ ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) ∧ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 46 | 45 | ex | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ∈ ( Edg ‘ 𝐺 ) ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 47 | 35 46 | biimtrid | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 3 ) → ( ∀ 𝑥 ∈ { 0 , 1 , 2 } { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 48 | 13 47 | biimtrdi | ⊢ ( ( ♯ ‘ 𝐹 ) = 3 → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑥 ∈ { 0 , 1 , 2 } { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
| 49 | 48 | impcom | ⊢ ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) → ( ∀ 𝑥 ∈ { 0 , 1 , 2 } { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 50 | 49 | adantl | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( ∀ 𝑥 ∈ { 0 , 1 , 2 } { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 51 | 11 50 | sylbid | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 52 | 5 51 | mpd | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ∧ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) = 3 ) ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |