This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A half-open integer range from 0 to 3 is an unordered triple. (Contributed by Alexander van der Vekens, 9-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzo0to3tp | ⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3z | ⊢ 3 ∈ ℤ | |
| 2 | fzoval | ⊢ ( 3 ∈ ℤ → ( 0 ..^ 3 ) = ( 0 ... ( 3 − 1 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 0 ..^ 3 ) = ( 0 ... ( 3 − 1 ) ) |
| 4 | 3m1e2 | ⊢ ( 3 − 1 ) = 2 | |
| 5 | 2cn | ⊢ 2 ∈ ℂ | |
| 6 | 5 | addlidi | ⊢ ( 0 + 2 ) = 2 |
| 7 | 4 6 | eqtr4i | ⊢ ( 3 − 1 ) = ( 0 + 2 ) |
| 8 | 7 | oveq2i | ⊢ ( 0 ... ( 3 − 1 ) ) = ( 0 ... ( 0 + 2 ) ) |
| 9 | 0z | ⊢ 0 ∈ ℤ | |
| 10 | fztp | ⊢ ( 0 ∈ ℤ → ( 0 ... ( 0 + 2 ) ) = { 0 , ( 0 + 1 ) , ( 0 + 2 ) } ) | |
| 11 | eqidd | ⊢ ( 0 ∈ ℤ → 0 = 0 ) | |
| 12 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 13 | 12 | a1i | ⊢ ( 0 ∈ ℤ → ( 0 + 1 ) = 1 ) |
| 14 | 6 | a1i | ⊢ ( 0 ∈ ℤ → ( 0 + 2 ) = 2 ) |
| 15 | 11 13 14 | tpeq123d | ⊢ ( 0 ∈ ℤ → { 0 , ( 0 + 1 ) , ( 0 + 2 ) } = { 0 , 1 , 2 } ) |
| 16 | 10 15 | eqtrd | ⊢ ( 0 ∈ ℤ → ( 0 ... ( 0 + 2 ) ) = { 0 , 1 , 2 } ) |
| 17 | 9 16 | ax-mp | ⊢ ( 0 ... ( 0 + 2 ) ) = { 0 , 1 , 2 } |
| 18 | 3 8 17 | 3eqtri | ⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } |