This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertices of a cycle of size 3 are a triangle in a graph. (Contributed by AV, 5-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycl3grtri.g | |- ( ph -> G e. UPGraph ) |
|
| cycl3grtri.c | |- ( ph -> F ( Cycles ` G ) P ) |
||
| cycl3grtri.n | |- ( ph -> ( # ` F ) = 3 ) |
||
| Assertion | cycl3grtri | |- ( ph -> ran P e. ( GrTriangles ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycl3grtri.g | |- ( ph -> G e. UPGraph ) |
|
| 2 | cycl3grtri.c | |- ( ph -> F ( Cycles ` G ) P ) |
|
| 3 | cycl3grtri.n | |- ( ph -> ( # ` F ) = 3 ) |
|
| 4 | cyclprop | |- ( F ( Cycles ` G ) P -> ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
|
| 5 | tpeq1 | |- ( x = ( P ` 0 ) -> { x , y , z } = { ( P ` 0 ) , y , z } ) |
|
| 6 | 5 | eqeq2d | |- ( x = ( P ` 0 ) -> ( ran P = { x , y , z } <-> ran P = { ( P ` 0 ) , y , z } ) ) |
| 7 | preq1 | |- ( x = ( P ` 0 ) -> { x , y } = { ( P ` 0 ) , y } ) |
|
| 8 | 7 | eleq1d | |- ( x = ( P ` 0 ) -> ( { x , y } e. ( Edg ` G ) <-> { ( P ` 0 ) , y } e. ( Edg ` G ) ) ) |
| 9 | preq1 | |- ( x = ( P ` 0 ) -> { x , z } = { ( P ` 0 ) , z } ) |
|
| 10 | 9 | eleq1d | |- ( x = ( P ` 0 ) -> ( { x , z } e. ( Edg ` G ) <-> { ( P ` 0 ) , z } e. ( Edg ` G ) ) ) |
| 11 | 8 10 | 3anbi12d | |- ( x = ( P ` 0 ) -> ( ( { x , y } e. ( Edg ` G ) /\ { x , z } e. ( Edg ` G ) /\ { y , z } e. ( Edg ` G ) ) <-> ( { ( P ` 0 ) , y } e. ( Edg ` G ) /\ { ( P ` 0 ) , z } e. ( Edg ` G ) /\ { y , z } e. ( Edg ` G ) ) ) ) |
| 12 | 6 11 | 3anbi13d | |- ( x = ( P ` 0 ) -> ( ( ran P = { x , y , z } /\ ( # ` ran P ) = 3 /\ ( { x , y } e. ( Edg ` G ) /\ { x , z } e. ( Edg ` G ) /\ { y , z } e. ( Edg ` G ) ) ) <-> ( ran P = { ( P ` 0 ) , y , z } /\ ( # ` ran P ) = 3 /\ ( { ( P ` 0 ) , y } e. ( Edg ` G ) /\ { ( P ` 0 ) , z } e. ( Edg ` G ) /\ { y , z } e. ( Edg ` G ) ) ) ) ) |
| 13 | tpeq2 | |- ( y = ( P ` 1 ) -> { ( P ` 0 ) , y , z } = { ( P ` 0 ) , ( P ` 1 ) , z } ) |
|
| 14 | 13 | eqeq2d | |- ( y = ( P ` 1 ) -> ( ran P = { ( P ` 0 ) , y , z } <-> ran P = { ( P ` 0 ) , ( P ` 1 ) , z } ) ) |
| 15 | preq2 | |- ( y = ( P ` 1 ) -> { ( P ` 0 ) , y } = { ( P ` 0 ) , ( P ` 1 ) } ) |
|
| 16 | 15 | eleq1d | |- ( y = ( P ` 1 ) -> ( { ( P ` 0 ) , y } e. ( Edg ` G ) <-> { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) ) ) |
| 17 | preq1 | |- ( y = ( P ` 1 ) -> { y , z } = { ( P ` 1 ) , z } ) |
|
| 18 | 17 | eleq1d | |- ( y = ( P ` 1 ) -> ( { y , z } e. ( Edg ` G ) <-> { ( P ` 1 ) , z } e. ( Edg ` G ) ) ) |
| 19 | 16 18 | 3anbi13d | |- ( y = ( P ` 1 ) -> ( ( { ( P ` 0 ) , y } e. ( Edg ` G ) /\ { ( P ` 0 ) , z } e. ( Edg ` G ) /\ { y , z } e. ( Edg ` G ) ) <-> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , z } e. ( Edg ` G ) /\ { ( P ` 1 ) , z } e. ( Edg ` G ) ) ) ) |
| 20 | 14 19 | 3anbi13d | |- ( y = ( P ` 1 ) -> ( ( ran P = { ( P ` 0 ) , y , z } /\ ( # ` ran P ) = 3 /\ ( { ( P ` 0 ) , y } e. ( Edg ` G ) /\ { ( P ` 0 ) , z } e. ( Edg ` G ) /\ { y , z } e. ( Edg ` G ) ) ) <-> ( ran P = { ( P ` 0 ) , ( P ` 1 ) , z } /\ ( # ` ran P ) = 3 /\ ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , z } e. ( Edg ` G ) /\ { ( P ` 1 ) , z } e. ( Edg ` G ) ) ) ) ) |
| 21 | tpeq3 | |- ( z = ( P ` 2 ) -> { ( P ` 0 ) , ( P ` 1 ) , z } = { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } ) |
|
| 22 | 21 | eqeq2d | |- ( z = ( P ` 2 ) -> ( ran P = { ( P ` 0 ) , ( P ` 1 ) , z } <-> ran P = { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 23 | preq2 | |- ( z = ( P ` 2 ) -> { ( P ` 0 ) , z } = { ( P ` 0 ) , ( P ` 2 ) } ) |
|
| 24 | 23 | eleq1d | |- ( z = ( P ` 2 ) -> ( { ( P ` 0 ) , z } e. ( Edg ` G ) <-> { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) |
| 25 | preq2 | |- ( z = ( P ` 2 ) -> { ( P ` 1 ) , z } = { ( P ` 1 ) , ( P ` 2 ) } ) |
|
| 26 | 25 | eleq1d | |- ( z = ( P ` 2 ) -> ( { ( P ` 1 ) , z } e. ( Edg ` G ) <-> { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) |
| 27 | 24 26 | 3anbi23d | |- ( z = ( P ` 2 ) -> ( ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , z } e. ( Edg ` G ) /\ { ( P ` 1 ) , z } e. ( Edg ` G ) ) <-> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) ) |
| 28 | 22 27 | 3anbi13d | |- ( z = ( P ` 2 ) -> ( ( ran P = { ( P ` 0 ) , ( P ` 1 ) , z } /\ ( # ` ran P ) = 3 /\ ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , z } e. ( Edg ` G ) /\ { ( P ` 1 ) , z } e. ( Edg ` G ) ) ) <-> ( ran P = { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } /\ ( # ` ran P ) = 3 /\ ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) ) ) |
| 29 | pthiswlk | |- ( F ( Paths ` G ) P -> F ( Walks ` G ) P ) |
|
| 30 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 31 | 30 | wlkp | |- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 32 | simpl | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
|
| 33 | 3nn0 | |- 3 e. NN0 |
|
| 34 | 0elfz | |- ( 3 e. NN0 -> 0 e. ( 0 ... 3 ) ) |
|
| 35 | 33 34 | ax-mp | |- 0 e. ( 0 ... 3 ) |
| 36 | oveq2 | |- ( ( # ` F ) = 3 -> ( 0 ... ( # ` F ) ) = ( 0 ... 3 ) ) |
|
| 37 | 35 36 | eleqtrrid | |- ( ( # ` F ) = 3 -> 0 e. ( 0 ... ( # ` F ) ) ) |
| 38 | 37 | ad2antll | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> 0 e. ( 0 ... ( # ` F ) ) ) |
| 39 | 32 38 | ffvelcdmd | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( P ` 0 ) e. ( Vtx ` G ) ) |
| 40 | 39 | ex | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) -> ( P ` 0 ) e. ( Vtx ` G ) ) ) |
| 41 | 29 31 40 | 3syl | |- ( F ( Paths ` G ) P -> ( ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) -> ( P ` 0 ) e. ( Vtx ` G ) ) ) |
| 42 | 41 | adantl | |- ( ( ph /\ F ( Paths ` G ) P ) -> ( ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) -> ( P ` 0 ) e. ( Vtx ` G ) ) ) |
| 43 | 42 | imp | |- ( ( ( ph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( P ` 0 ) e. ( Vtx ` G ) ) |
| 44 | 1nn0 | |- 1 e. NN0 |
|
| 45 | 1le3 | |- 1 <_ 3 |
|
| 46 | elfz2nn0 | |- ( 1 e. ( 0 ... 3 ) <-> ( 1 e. NN0 /\ 3 e. NN0 /\ 1 <_ 3 ) ) |
|
| 47 | 44 33 45 46 | mpbir3an | |- 1 e. ( 0 ... 3 ) |
| 48 | 47 36 | eleqtrrid | |- ( ( # ` F ) = 3 -> 1 e. ( 0 ... ( # ` F ) ) ) |
| 49 | 48 | ad2antll | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> 1 e. ( 0 ... ( # ` F ) ) ) |
| 50 | 32 49 | ffvelcdmd | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( P ` 1 ) e. ( Vtx ` G ) ) |
| 51 | 50 | ex | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) -> ( P ` 1 ) e. ( Vtx ` G ) ) ) |
| 52 | 29 31 51 | 3syl | |- ( F ( Paths ` G ) P -> ( ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) -> ( P ` 1 ) e. ( Vtx ` G ) ) ) |
| 53 | 52 | adantl | |- ( ( ph /\ F ( Paths ` G ) P ) -> ( ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) -> ( P ` 1 ) e. ( Vtx ` G ) ) ) |
| 54 | 53 | imp | |- ( ( ( ph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( P ` 1 ) e. ( Vtx ` G ) ) |
| 55 | 2nn0 | |- 2 e. NN0 |
|
| 56 | 2re | |- 2 e. RR |
|
| 57 | 3re | |- 3 e. RR |
|
| 58 | 2lt3 | |- 2 < 3 |
|
| 59 | 56 57 58 | ltleii | |- 2 <_ 3 |
| 60 | elfz2nn0 | |- ( 2 e. ( 0 ... 3 ) <-> ( 2 e. NN0 /\ 3 e. NN0 /\ 2 <_ 3 ) ) |
|
| 61 | 55 33 59 60 | mpbir3an | |- 2 e. ( 0 ... 3 ) |
| 62 | 61 36 | eleqtrrid | |- ( ( # ` F ) = 3 -> 2 e. ( 0 ... ( # ` F ) ) ) |
| 63 | 62 | ad2antll | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> 2 e. ( 0 ... ( # ` F ) ) ) |
| 64 | 32 63 | ffvelcdmd | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( P ` 2 ) e. ( Vtx ` G ) ) |
| 65 | 64 | ex | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) -> ( P ` 2 ) e. ( Vtx ` G ) ) ) |
| 66 | 29 31 65 | 3syl | |- ( F ( Paths ` G ) P -> ( ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) -> ( P ` 2 ) e. ( Vtx ` G ) ) ) |
| 67 | 66 | adantl | |- ( ( ph /\ F ( Paths ` G ) P ) -> ( ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) -> ( P ` 2 ) e. ( Vtx ` G ) ) ) |
| 68 | 67 | imp | |- ( ( ( ph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( P ` 2 ) e. ( Vtx ` G ) ) |
| 69 | fdm | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> dom P = ( 0 ... ( # ` F ) ) ) |
|
| 70 | elnn0uz | |- ( 3 e. NN0 <-> 3 e. ( ZZ>= ` 0 ) ) |
|
| 71 | 33 70 | mpbi | |- 3 e. ( ZZ>= ` 0 ) |
| 72 | fzisfzounsn | |- ( 3 e. ( ZZ>= ` 0 ) -> ( 0 ... 3 ) = ( ( 0 ..^ 3 ) u. { 3 } ) ) |
|
| 73 | 71 72 | ax-mp | |- ( 0 ... 3 ) = ( ( 0 ..^ 3 ) u. { 3 } ) |
| 74 | fzo0to3tp | |- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
|
| 75 | 74 | uneq1i | |- ( ( 0 ..^ 3 ) u. { 3 } ) = ( { 0 , 1 , 2 } u. { 3 } ) |
| 76 | 73 75 | eqtri | |- ( 0 ... 3 ) = ( { 0 , 1 , 2 } u. { 3 } ) |
| 77 | 36 76 | eqtrdi | |- ( ( # ` F ) = 3 -> ( 0 ... ( # ` F ) ) = ( { 0 , 1 , 2 } u. { 3 } ) ) |
| 78 | 77 | adantl | |- ( ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) -> ( 0 ... ( # ` F ) ) = ( { 0 , 1 , 2 } u. { 3 } ) ) |
| 79 | 69 78 | sylan9eq | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> dom P = ( { 0 , 1 , 2 } u. { 3 } ) ) |
| 80 | 79 | imaeq2d | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( P " dom P ) = ( P " ( { 0 , 1 , 2 } u. { 3 } ) ) ) |
| 81 | imadmrn | |- ( P " dom P ) = ran P |
|
| 82 | imaundi | |- ( P " ( { 0 , 1 , 2 } u. { 3 } ) ) = ( ( P " { 0 , 1 , 2 } ) u. ( P " { 3 } ) ) |
|
| 83 | 80 81 82 | 3eqtr3g | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ran P = ( ( P " { 0 , 1 , 2 } ) u. ( P " { 3 } ) ) ) |
| 84 | ffn | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> P Fn ( 0 ... ( # ` F ) ) ) |
|
| 85 | 84 | adantr | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> P Fn ( 0 ... ( # ` F ) ) ) |
| 86 | 85 38 49 63 | fnimatpd | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( P " { 0 , 1 , 2 } ) = { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } ) |
| 87 | nn0fz0 | |- ( 3 e. NN0 <-> 3 e. ( 0 ... 3 ) ) |
|
| 88 | 33 87 | mpbi | |- 3 e. ( 0 ... 3 ) |
| 89 | 88 36 | eleqtrrid | |- ( ( # ` F ) = 3 -> 3 e. ( 0 ... ( # ` F ) ) ) |
| 90 | 89 | adantl | |- ( ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) -> 3 e. ( 0 ... ( # ` F ) ) ) |
| 91 | fnsnfv | |- ( ( P Fn ( 0 ... ( # ` F ) ) /\ 3 e. ( 0 ... ( # ` F ) ) ) -> { ( P ` 3 ) } = ( P " { 3 } ) ) |
|
| 92 | 84 90 91 | syl2an | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> { ( P ` 3 ) } = ( P " { 3 } ) ) |
| 93 | 92 | eqcomd | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( P " { 3 } ) = { ( P ` 3 ) } ) |
| 94 | 86 93 | uneq12d | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( ( P " { 0 , 1 , 2 } ) u. ( P " { 3 } ) ) = ( { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } u. { ( P ` 3 ) } ) ) |
| 95 | fveq2 | |- ( ( # ` F ) = 3 -> ( P ` ( # ` F ) ) = ( P ` 3 ) ) |
|
| 96 | 95 | eqeq2d | |- ( ( # ` F ) = 3 -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) <-> ( P ` 0 ) = ( P ` 3 ) ) ) |
| 97 | sneq | |- ( ( P ` 3 ) = ( P ` 0 ) -> { ( P ` 3 ) } = { ( P ` 0 ) } ) |
|
| 98 | 97 | eqcoms | |- ( ( P ` 0 ) = ( P ` 3 ) -> { ( P ` 3 ) } = { ( P ` 0 ) } ) |
| 99 | 98 | uneq2d | |- ( ( P ` 0 ) = ( P ` 3 ) -> ( { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } u. { ( P ` 3 ) } ) = ( { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } u. { ( P ` 0 ) } ) ) |
| 100 | snsstp1 | |- { ( P ` 0 ) } C_ { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } |
|
| 101 | 100 | a1i | |- ( ( P ` 0 ) = ( P ` 3 ) -> { ( P ` 0 ) } C_ { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } ) |
| 102 | ssequn2 | |- ( { ( P ` 0 ) } C_ { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } <-> ( { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } u. { ( P ` 0 ) } ) = { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } ) |
|
| 103 | 101 102 | sylib | |- ( ( P ` 0 ) = ( P ` 3 ) -> ( { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } u. { ( P ` 0 ) } ) = { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } ) |
| 104 | 99 103 | eqtrd | |- ( ( P ` 0 ) = ( P ` 3 ) -> ( { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } u. { ( P ` 3 ) } ) = { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } ) |
| 105 | 96 104 | biimtrdi | |- ( ( # ` F ) = 3 -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } u. { ( P ` 3 ) } ) = { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 106 | 105 | impcom | |- ( ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) -> ( { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } u. { ( P ` 3 ) } ) = { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } ) |
| 107 | 106 | adantl | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } u. { ( P ` 3 ) } ) = { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } ) |
| 108 | 83 94 107 | 3eqtrd | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ran P = { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } ) |
| 109 | 108 | ex | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) -> ran P = { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 110 | 29 31 109 | 3syl | |- ( F ( Paths ` G ) P -> ( ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) -> ran P = { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 111 | 110 | adantl | |- ( ( ph /\ F ( Paths ` G ) P ) -> ( ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) -> ran P = { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 112 | 111 | imp | |- ( ( ( ph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ran P = { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } ) |
| 113 | breq2 | |- ( ( # ` F ) = 3 -> ( 1 <_ ( # ` F ) <-> 1 <_ 3 ) ) |
|
| 114 | 45 113 | mpbiri | |- ( ( # ` F ) = 3 -> 1 <_ ( # ` F ) ) |
| 115 | 114 | ad2antll | |- ( ( ( ph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> 1 <_ ( # ` F ) ) |
| 116 | 2 | ad2antrr | |- ( ( ( ph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> F ( Cycles ` G ) P ) |
| 117 | cyclnumvtx | |- ( ( 1 <_ ( # ` F ) /\ F ( Cycles ` G ) P ) -> ( # ` ran P ) = ( # ` F ) ) |
|
| 118 | 115 116 117 | syl2anc | |- ( ( ( ph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( # ` ran P ) = ( # ` F ) ) |
| 119 | 3 | ad2antrr | |- ( ( ( ph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( # ` F ) = 3 ) |
| 120 | 118 119 | eqtrd | |- ( ( ( ph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( # ` ran P ) = 3 ) |
| 121 | cycl3grtrilem | |- ( ( ( G e. UPGraph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) |
|
| 122 | 1 121 | sylanl1 | |- ( ( ( ph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) |
| 123 | 112 120 122 | 3jca | |- ( ( ( ph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ( ran P = { ( P ` 0 ) , ( P ` 1 ) , ( P ` 2 ) } /\ ( # ` ran P ) = 3 /\ ( { ( P ` 0 ) , ( P ` 1 ) } e. ( Edg ` G ) /\ { ( P ` 0 ) , ( P ` 2 ) } e. ( Edg ` G ) /\ { ( P ` 1 ) , ( P ` 2 ) } e. ( Edg ` G ) ) ) ) |
| 124 | 12 20 28 43 54 68 123 | 3rspcedvdw | |- ( ( ( ph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> E. x e. ( Vtx ` G ) E. y e. ( Vtx ` G ) E. z e. ( Vtx ` G ) ( ran P = { x , y , z } /\ ( # ` ran P ) = 3 /\ ( { x , y } e. ( Edg ` G ) /\ { x , z } e. ( Edg ` G ) /\ { y , z } e. ( Edg ` G ) ) ) ) |
| 125 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 126 | 30 125 | isgrtri | |- ( ran P e. ( GrTriangles ` G ) <-> E. x e. ( Vtx ` G ) E. y e. ( Vtx ` G ) E. z e. ( Vtx ` G ) ( ran P = { x , y , z } /\ ( # ` ran P ) = 3 /\ ( { x , y } e. ( Edg ` G ) /\ { x , z } e. ( Edg ` G ) /\ { y , z } e. ( Edg ` G ) ) ) ) |
| 127 | 124 126 | sylibr | |- ( ( ( ph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ran P e. ( GrTriangles ` G ) ) |
| 128 | 127 | exp32 | |- ( ( ph /\ F ( Paths ` G ) P ) -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( ( # ` F ) = 3 -> ran P e. ( GrTriangles ` G ) ) ) ) |
| 129 | 128 | com23 | |- ( ( ph /\ F ( Paths ` G ) P ) -> ( ( # ` F ) = 3 -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ran P e. ( GrTriangles ` G ) ) ) ) |
| 130 | 129 | expcom | |- ( F ( Paths ` G ) P -> ( ph -> ( ( # ` F ) = 3 -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ran P e. ( GrTriangles ` G ) ) ) ) ) |
| 131 | 130 | com24 | |- ( F ( Paths ` G ) P -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( ( # ` F ) = 3 -> ( ph -> ran P e. ( GrTriangles ` G ) ) ) ) ) |
| 132 | 131 | imp | |- ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( # ` F ) = 3 -> ( ph -> ran P e. ( GrTriangles ` G ) ) ) ) |
| 133 | 4 132 | syl | |- ( F ( Cycles ` G ) P -> ( ( # ` F ) = 3 -> ( ph -> ran P e. ( GrTriangles ` G ) ) ) ) |
| 134 | 133 | com13 | |- ( ph -> ( ( # ` F ) = 3 -> ( F ( Cycles ` G ) P -> ran P e. ( GrTriangles ` G ) ) ) ) |
| 135 | 3 2 134 | mp2d | |- ( ph -> ran P e. ( GrTriangles ` G ) ) |