This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of an unordered triple under a function. (Contributed by Thierry Arnoux, 19-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fnimatpd.1 | ⊢ ( 𝜑 → 𝐹 Fn 𝐷 ) | |
| fnimatpd.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) | ||
| fnimatpd.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | ||
| fnimatpd.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) | ||
| Assertion | fnimatpd | ⊢ ( 𝜑 → ( 𝐹 “ { 𝐴 , 𝐵 , 𝐶 } ) = { ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐶 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnimatpd.1 | ⊢ ( 𝜑 → 𝐹 Fn 𝐷 ) | |
| 2 | fnimatpd.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) | |
| 3 | fnimatpd.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | |
| 4 | fnimatpd.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) | |
| 5 | fnimapr | ⊢ ( ( 𝐹 Fn 𝐷 ∧ 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐹 “ { 𝐴 , 𝐵 } ) = { ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) } ) | |
| 6 | 1 2 3 5 | syl3anc | ⊢ ( 𝜑 → ( 𝐹 “ { 𝐴 , 𝐵 } ) = { ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) } ) |
| 7 | fnsnfv | ⊢ ( ( 𝐹 Fn 𝐷 ∧ 𝐶 ∈ 𝐷 ) → { ( 𝐹 ‘ 𝐶 ) } = ( 𝐹 “ { 𝐶 } ) ) | |
| 8 | 1 4 7 | syl2anc | ⊢ ( 𝜑 → { ( 𝐹 ‘ 𝐶 ) } = ( 𝐹 “ { 𝐶 } ) ) |
| 9 | 8 | eqcomd | ⊢ ( 𝜑 → ( 𝐹 “ { 𝐶 } ) = { ( 𝐹 ‘ 𝐶 ) } ) |
| 10 | 6 9 | uneq12d | ⊢ ( 𝜑 → ( ( 𝐹 “ { 𝐴 , 𝐵 } ) ∪ ( 𝐹 “ { 𝐶 } ) ) = ( { ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) } ∪ { ( 𝐹 ‘ 𝐶 ) } ) ) |
| 11 | df-tp | ⊢ { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) | |
| 12 | 11 | imaeq2i | ⊢ ( 𝐹 “ { 𝐴 , 𝐵 , 𝐶 } ) = ( 𝐹 “ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ) |
| 13 | imaundi | ⊢ ( 𝐹 “ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ) = ( ( 𝐹 “ { 𝐴 , 𝐵 } ) ∪ ( 𝐹 “ { 𝐶 } ) ) | |
| 14 | 12 13 | eqtri | ⊢ ( 𝐹 “ { 𝐴 , 𝐵 , 𝐶 } ) = ( ( 𝐹 “ { 𝐴 , 𝐵 } ) ∪ ( 𝐹 “ { 𝐶 } ) ) |
| 15 | df-tp | ⊢ { ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐶 ) } = ( { ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) } ∪ { ( 𝐹 ‘ 𝐶 ) } ) | |
| 16 | 10 14 15 | 3eqtr4g | ⊢ ( 𝜑 → ( 𝐹 “ { 𝐴 , 𝐵 , 𝐶 } ) = { ( 𝐹 ‘ 𝐴 ) , ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐶 ) } ) |