This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Add join to both sides of a lattice ordering. ( chlej2i analog.) (Contributed by NM, 8-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latlej.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latlej.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| latlej.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| Assertion | latjlej2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑌 → ( 𝑍 ∨ 𝑋 ) ≤ ( 𝑍 ∨ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latlej.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | latlej.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | 1 2 3 | latjlej1 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑌 → ( 𝑋 ∨ 𝑍 ) ≤ ( 𝑌 ∨ 𝑍 ) ) ) |
| 5 | 1 3 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑍 ) = ( 𝑍 ∨ 𝑋 ) ) |
| 6 | 5 | 3adant3r2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∨ 𝑍 ) = ( 𝑍 ∨ 𝑋 ) ) |
| 7 | 1 3 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 ∨ 𝑍 ) = ( 𝑍 ∨ 𝑌 ) ) |
| 8 | 7 | 3adant3r1 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 ∨ 𝑍 ) = ( 𝑍 ∨ 𝑌 ) ) |
| 9 | 6 8 | breq12d | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∨ 𝑍 ) ≤ ( 𝑌 ∨ 𝑍 ) ↔ ( 𝑍 ∨ 𝑋 ) ≤ ( 𝑍 ∨ 𝑌 ) ) ) |
| 10 | 4 9 | sylibd | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑌 → ( 𝑍 ∨ 𝑋 ) ≤ ( 𝑍 ∨ 𝑌 ) ) ) |