This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lattice join is idempotent. Analogue of unidm . (Contributed by NM, 8-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latjidm.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latjidm.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| Assertion | latjidm | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑋 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latjidm.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latjidm.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 4 | simpl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ Lat ) | |
| 5 | 1 2 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑋 ) ∈ 𝐵 ) |
| 6 | 5 | 3anidm23 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑋 ) ∈ 𝐵 ) |
| 7 | simpr | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 8 | 1 3 | latref | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ( le ‘ 𝐾 ) 𝑋 ) |
| 9 | 1 3 2 | latjle12 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑋 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑋 ( le ‘ 𝐾 ) 𝑋 ) ↔ ( 𝑋 ∨ 𝑋 ) ( le ‘ 𝐾 ) 𝑋 ) ) |
| 10 | 4 7 7 7 9 | syl13anc | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑋 ( le ‘ 𝐾 ) 𝑋 ) ↔ ( 𝑋 ∨ 𝑋 ) ( le ‘ 𝐾 ) 𝑋 ) ) |
| 11 | 8 8 10 | mpbi2and | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑋 ) ( le ‘ 𝐾 ) 𝑋 ) |
| 12 | 1 3 2 | latlej1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑋 ) ) |
| 13 | 12 | 3anidm23 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ( le ‘ 𝐾 ) ( 𝑋 ∨ 𝑋 ) ) |
| 14 | 1 3 4 6 7 11 13 | latasymd | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑋 ) = 𝑋 ) |