This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Hilbert lattice satisfies the exchange axiom. Proposition 1(iii) of Kalmbach p. 140 and its converse. Originally proved by Garrett Birkhoff in 1933. ( cvexchi analog.) (Contributed by NM, 18-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrexch.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| cvrexch.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| cvrexch.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| cvrexch.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | ||
| Assertion | cvrexch | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) 𝐶 𝑌 ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrexch.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | cvrexch.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | cvrexch.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 4 | cvrexch.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | |
| 5 | 1 2 3 4 | cvrexchlem | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) 𝐶 𝑌 → 𝑋 𝐶 ( 𝑋 ∨ 𝑌 ) ) ) |
| 6 | simp1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ HL ) | |
| 7 | hlop | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) | |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
| 9 | simp3 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 10 | eqid | ⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) | |
| 11 | 1 10 | opoccl | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 12 | 8 9 11 | syl2anc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 13 | simp2 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 14 | 1 10 | opoccl | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 15 | 8 13 14 | syl2anc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 16 | 1 2 3 4 | cvrexchlem | ⊢ ( ( 𝐾 ∈ HL ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) ) |
| 17 | 6 12 15 16 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) ) |
| 18 | hlol | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) | |
| 19 | 1 2 3 10 | oldmj1 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
| 20 | 18 19 | syl3an1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
| 21 | hllat | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) | |
| 22 | 21 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
| 23 | 1 3 | latmcom | ⊢ ( ( 𝐾 ∈ Lat ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 24 | 22 15 12 23 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 25 | 20 24 | eqtrd | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 26 | 25 | breq1d | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ↔ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 27 | 1 2 3 10 | oldmm1 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
| 28 | 18 27 | syl3an1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
| 29 | 1 2 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 30 | 22 15 12 29 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 31 | 28 30 | eqtrd | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 32 | 31 | breq2d | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∧ 𝑌 ) ) ↔ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) ) |
| 33 | 17 26 32 | 3imtr4d | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
| 34 | 1 2 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
| 35 | 21 34 | syl3an1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
| 36 | 1 10 4 | cvrcon3b | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 𝐶 ( 𝑋 ∨ 𝑌 ) ↔ ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 37 | 8 13 35 36 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 ( 𝑋 ∨ 𝑌 ) ↔ ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 38 | 1 3 | latmcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 39 | 21 38 | syl3an1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 40 | 1 10 4 | cvrcon3b | ⊢ ( ( 𝐾 ∈ OP ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) 𝐶 𝑌 ↔ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
| 41 | 8 39 9 40 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) 𝐶 𝑌 ↔ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
| 42 | 33 37 41 | 3imtr4d | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 ( 𝑋 ∨ 𝑌 ) → ( 𝑋 ∧ 𝑌 ) 𝐶 𝑌 ) ) |
| 43 | 5 42 | impbid | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) 𝐶 𝑌 ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑌 ) ) ) |