This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition implying that a certain lattice element is an atom. Part of Lemma 3.2.20 of PtakPulmannova p. 68. ( atcvat3i analog.) (Contributed by NM, 30-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrat3.b | |- B = ( Base ` K ) |
|
| cvrat3.l | |- .<_ = ( le ` K ) |
||
| cvrat3.j | |- .\/ = ( join ` K ) |
||
| cvrat3.m | |- ./\ = ( meet ` K ) |
||
| cvrat3.a | |- A = ( Atoms ` K ) |
||
| Assertion | cvrat3 | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( P =/= Q /\ -. Q .<_ X /\ P .<_ ( X .\/ Q ) ) -> ( X ./\ ( P .\/ Q ) ) e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrat3.b | |- B = ( Base ` K ) |
|
| 2 | cvrat3.l | |- .<_ = ( le ` K ) |
|
| 3 | cvrat3.j | |- .\/ = ( join ` K ) |
|
| 4 | cvrat3.m | |- ./\ = ( meet ` K ) |
|
| 5 | cvrat3.a | |- A = ( Atoms ` K ) |
|
| 6 | eqid | |- ( |
|
| 7 | 1 2 3 6 5 | cvr1 | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( -. Q .<_ X <-> X ( |
| 8 | 7 | 3adant3r2 | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( -. Q .<_ X <-> X ( |
| 9 | 8 | biimpa | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ -. Q .<_ X ) -> X ( |
| 10 | 9 | adantrr | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( -. Q .<_ X /\ P .<_ ( X .\/ Q ) ) ) -> X ( |
| 11 | hllat | |- ( K e. HL -> K e. Lat ) |
|
| 12 | 11 | adantr | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> K e. Lat ) |
| 13 | simpr2 | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> P e. A ) |
|
| 14 | 1 5 | atbase | |- ( P e. A -> P e. B ) |
| 15 | 13 14 | syl | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> P e. B ) |
| 16 | simpr3 | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> Q e. A ) |
|
| 17 | 1 5 | atbase | |- ( Q e. A -> Q e. B ) |
| 18 | 16 17 | syl | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> Q e. B ) |
| 19 | 1 3 | latjcom | |- ( ( K e. Lat /\ P e. B /\ Q e. B ) -> ( P .\/ Q ) = ( Q .\/ P ) ) |
| 20 | 12 15 18 19 | syl3anc | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P .\/ Q ) = ( Q .\/ P ) ) |
| 21 | 20 | oveq2d | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X .\/ ( P .\/ Q ) ) = ( X .\/ ( Q .\/ P ) ) ) |
| 22 | simpr1 | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> X e. B ) |
|
| 23 | 1 3 | latjass | |- ( ( K e. Lat /\ ( X e. B /\ Q e. B /\ P e. B ) ) -> ( ( X .\/ Q ) .\/ P ) = ( X .\/ ( Q .\/ P ) ) ) |
| 24 | 12 22 18 15 23 | syl13anc | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X .\/ Q ) .\/ P ) = ( X .\/ ( Q .\/ P ) ) ) |
| 25 | 21 24 | eqtr4d | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X .\/ ( P .\/ Q ) ) = ( ( X .\/ Q ) .\/ P ) ) |
| 26 | 25 | adantr | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P .<_ ( X .\/ Q ) ) -> ( X .\/ ( P .\/ Q ) ) = ( ( X .\/ Q ) .\/ P ) ) |
| 27 | 1 3 | latjcl | |- ( ( K e. Lat /\ X e. B /\ Q e. B ) -> ( X .\/ Q ) e. B ) |
| 28 | 12 22 18 27 | syl3anc | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X .\/ Q ) e. B ) |
| 29 | 1 2 3 | latjlej2 | |- ( ( K e. Lat /\ ( P e. B /\ ( X .\/ Q ) e. B /\ ( X .\/ Q ) e. B ) ) -> ( P .<_ ( X .\/ Q ) -> ( ( X .\/ Q ) .\/ P ) .<_ ( ( X .\/ Q ) .\/ ( X .\/ Q ) ) ) ) |
| 30 | 12 15 28 28 29 | syl13anc | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P .<_ ( X .\/ Q ) -> ( ( X .\/ Q ) .\/ P ) .<_ ( ( X .\/ Q ) .\/ ( X .\/ Q ) ) ) ) |
| 31 | 30 | imp | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P .<_ ( X .\/ Q ) ) -> ( ( X .\/ Q ) .\/ P ) .<_ ( ( X .\/ Q ) .\/ ( X .\/ Q ) ) ) |
| 32 | 26 31 | eqbrtrd | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P .<_ ( X .\/ Q ) ) -> ( X .\/ ( P .\/ Q ) ) .<_ ( ( X .\/ Q ) .\/ ( X .\/ Q ) ) ) |
| 33 | 1 3 | latjidm | |- ( ( K e. Lat /\ ( X .\/ Q ) e. B ) -> ( ( X .\/ Q ) .\/ ( X .\/ Q ) ) = ( X .\/ Q ) ) |
| 34 | 12 28 33 | syl2anc | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X .\/ Q ) .\/ ( X .\/ Q ) ) = ( X .\/ Q ) ) |
| 35 | 34 | adantr | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P .<_ ( X .\/ Q ) ) -> ( ( X .\/ Q ) .\/ ( X .\/ Q ) ) = ( X .\/ Q ) ) |
| 36 | 32 35 | breqtrd | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P .<_ ( X .\/ Q ) ) -> ( X .\/ ( P .\/ Q ) ) .<_ ( X .\/ Q ) ) |
| 37 | simpl | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> K e. HL ) |
|
| 38 | 2 3 5 | hlatlej2 | |- ( ( K e. HL /\ P e. A /\ Q e. A ) -> Q .<_ ( P .\/ Q ) ) |
| 39 | 37 13 16 38 | syl3anc | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> Q .<_ ( P .\/ Q ) ) |
| 40 | 1 3 | latjcl | |- ( ( K e. Lat /\ P e. B /\ Q e. B ) -> ( P .\/ Q ) e. B ) |
| 41 | 12 15 18 40 | syl3anc | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P .\/ Q ) e. B ) |
| 42 | 1 2 3 | latjlej2 | |- ( ( K e. Lat /\ ( Q e. B /\ ( P .\/ Q ) e. B /\ X e. B ) ) -> ( Q .<_ ( P .\/ Q ) -> ( X .\/ Q ) .<_ ( X .\/ ( P .\/ Q ) ) ) ) |
| 43 | 12 18 41 22 42 | syl13anc | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( Q .<_ ( P .\/ Q ) -> ( X .\/ Q ) .<_ ( X .\/ ( P .\/ Q ) ) ) ) |
| 44 | 39 43 | mpd | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X .\/ Q ) .<_ ( X .\/ ( P .\/ Q ) ) ) |
| 45 | 44 | adantr | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P .<_ ( X .\/ Q ) ) -> ( X .\/ Q ) .<_ ( X .\/ ( P .\/ Q ) ) ) |
| 46 | 1 3 | latjcl | |- ( ( K e. Lat /\ X e. B /\ ( P .\/ Q ) e. B ) -> ( X .\/ ( P .\/ Q ) ) e. B ) |
| 47 | 12 22 41 46 | syl3anc | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X .\/ ( P .\/ Q ) ) e. B ) |
| 48 | 1 2 | latasymb | |- ( ( K e. Lat /\ ( X .\/ ( P .\/ Q ) ) e. B /\ ( X .\/ Q ) e. B ) -> ( ( ( X .\/ ( P .\/ Q ) ) .<_ ( X .\/ Q ) /\ ( X .\/ Q ) .<_ ( X .\/ ( P .\/ Q ) ) ) <-> ( X .\/ ( P .\/ Q ) ) = ( X .\/ Q ) ) ) |
| 49 | 12 47 28 48 | syl3anc | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( ( X .\/ ( P .\/ Q ) ) .<_ ( X .\/ Q ) /\ ( X .\/ Q ) .<_ ( X .\/ ( P .\/ Q ) ) ) <-> ( X .\/ ( P .\/ Q ) ) = ( X .\/ Q ) ) ) |
| 50 | 49 | adantr | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P .<_ ( X .\/ Q ) ) -> ( ( ( X .\/ ( P .\/ Q ) ) .<_ ( X .\/ Q ) /\ ( X .\/ Q ) .<_ ( X .\/ ( P .\/ Q ) ) ) <-> ( X .\/ ( P .\/ Q ) ) = ( X .\/ Q ) ) ) |
| 51 | 36 45 50 | mpbi2and | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P .<_ ( X .\/ Q ) ) -> ( X .\/ ( P .\/ Q ) ) = ( X .\/ Q ) ) |
| 52 | 51 | breq2d | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P .<_ ( X .\/ Q ) ) -> ( X ( |
| 53 | 52 | adantrl | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( -. Q .<_ X /\ P .<_ ( X .\/ Q ) ) ) -> ( X ( |
| 54 | 10 53 | mpbird | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ ( -. Q .<_ X /\ P .<_ ( X .\/ Q ) ) ) -> X ( |
| 55 | 54 | ex | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( -. Q .<_ X /\ P .<_ ( X .\/ Q ) ) -> X ( |
| 56 | 1 3 4 6 | cvrexch | |- ( ( K e. HL /\ X e. B /\ ( P .\/ Q ) e. B ) -> ( ( X ./\ ( P .\/ Q ) ) ( |
| 57 | 37 22 41 56 | syl3anc | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( X ./\ ( P .\/ Q ) ) ( |
| 58 | 55 57 | sylibrd | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( -. Q .<_ X /\ P .<_ ( X .\/ Q ) ) -> ( X ./\ ( P .\/ Q ) ) ( |
| 59 | 58 | adantr | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P =/= Q ) -> ( ( -. Q .<_ X /\ P .<_ ( X .\/ Q ) ) -> ( X ./\ ( P .\/ Q ) ) ( |
| 60 | 1 4 | latmcl | |- ( ( K e. Lat /\ X e. B /\ ( P .\/ Q ) e. B ) -> ( X ./\ ( P .\/ Q ) ) e. B ) |
| 61 | 12 22 41 60 | syl3anc | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( X ./\ ( P .\/ Q ) ) e. B ) |
| 62 | 1 3 6 5 | cvrat2 | |- ( ( K e. HL /\ ( ( X ./\ ( P .\/ Q ) ) e. B /\ P e. A /\ Q e. A ) /\ ( P =/= Q /\ ( X ./\ ( P .\/ Q ) ) ( |
| 63 | 62 | 3expia | |- ( ( K e. HL /\ ( ( X ./\ ( P .\/ Q ) ) e. B /\ P e. A /\ Q e. A ) ) -> ( ( P =/= Q /\ ( X ./\ ( P .\/ Q ) ) ( |
| 64 | 37 61 13 16 63 | syl13anc | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( P =/= Q /\ ( X ./\ ( P .\/ Q ) ) ( |
| 65 | 64 | expdimp | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P =/= Q ) -> ( ( X ./\ ( P .\/ Q ) ) ( |
| 66 | 59 65 | syld | |- ( ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) /\ P =/= Q ) -> ( ( -. Q .<_ X /\ P .<_ ( X .\/ Q ) ) -> ( X ./\ ( P .\/ Q ) ) e. A ) ) |
| 67 | 66 | exp4b | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( P =/= Q -> ( -. Q .<_ X -> ( P .<_ ( X .\/ Q ) -> ( X ./\ ( P .\/ Q ) ) e. A ) ) ) ) |
| 68 | 67 | 3impd | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( P =/= Q /\ -. Q .<_ X /\ P .<_ ( X .\/ Q ) ) -> ( X ./\ ( P .\/ Q ) ) e. A ) ) |