This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition implying that a certain lattice element is an atom. Part of Lemma 3.2.20 of PtakPulmannova p. 68. (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | atcvat3.1 | ⊢ 𝐴 ∈ Cℋ | |
| Assertion | atcvat3i | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( ( ¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 ⊆ 𝐴 ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ∈ HAtoms ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atcvat3.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | chcv1 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐶 ∈ HAtoms ) → ( ¬ 𝐶 ⊆ 𝐴 ↔ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐶 ) ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐶 ∈ HAtoms → ( ¬ 𝐶 ⊆ 𝐴 ↔ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐶 ) ) ) |
| 4 | 3 | biimpa | ⊢ ( ( 𝐶 ∈ HAtoms ∧ ¬ 𝐶 ⊆ 𝐴 ) → 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐶 ) ) |
| 5 | 4 | ad2ant2lr | ⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ ( ¬ 𝐶 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ) → 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐶 ) ) |
| 6 | atelch | ⊢ ( 𝐵 ∈ HAtoms → 𝐵 ∈ Cℋ ) | |
| 7 | atelch | ⊢ ( 𝐶 ∈ HAtoms → 𝐶 ∈ Cℋ ) | |
| 8 | 6 7 | anim12i | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ) |
| 9 | chjcom | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐵 ∨ℋ 𝐶 ) = ( 𝐶 ∨ℋ 𝐵 ) ) | |
| 10 | 9 | oveq2d | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) = ( 𝐴 ∨ℋ ( 𝐶 ∨ℋ 𝐵 ) ) ) |
| 11 | chjass | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ 𝐵 ) = ( 𝐴 ∨ℋ ( 𝐶 ∨ℋ 𝐵 ) ) ) | |
| 12 | 1 11 | mp3an1 | ⊢ ( ( 𝐶 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ 𝐵 ) = ( 𝐴 ∨ℋ ( 𝐶 ∨ℋ 𝐵 ) ) ) |
| 13 | 12 | ancoms | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ 𝐵 ) = ( 𝐴 ∨ℋ ( 𝐶 ∨ℋ 𝐵 ) ) ) |
| 14 | 10 13 | eqtr4d | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) = ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ 𝐵 ) ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) = ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ 𝐵 ) ) |
| 16 | simpl | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → 𝐵 ∈ Cℋ ) | |
| 17 | chjcl | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ∨ℋ 𝐶 ) ∈ Cℋ ) | |
| 18 | 1 17 | mpan | ⊢ ( 𝐶 ∈ Cℋ → ( 𝐴 ∨ℋ 𝐶 ) ∈ Cℋ ) |
| 19 | 18 | adantl | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ∨ℋ 𝐶 ) ∈ Cℋ ) |
| 20 | chlej2 | ⊢ ( ( ( 𝐵 ∈ Cℋ ∧ ( 𝐴 ∨ℋ 𝐶 ) ∈ Cℋ ∧ ( 𝐴 ∨ℋ 𝐶 ) ∈ Cℋ ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ 𝐵 ) ⊆ ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ ( 𝐴 ∨ℋ 𝐶 ) ) ) | |
| 21 | 20 | ex | ⊢ ( ( 𝐵 ∈ Cℋ ∧ ( 𝐴 ∨ℋ 𝐶 ) ∈ Cℋ ∧ ( 𝐴 ∨ℋ 𝐶 ) ∈ Cℋ ) → ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) → ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ 𝐵 ) ⊆ ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ ( 𝐴 ∨ℋ 𝐶 ) ) ) ) |
| 22 | 16 19 19 21 | syl3anc | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) → ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ 𝐵 ) ⊆ ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ ( 𝐴 ∨ℋ 𝐶 ) ) ) ) |
| 23 | 22 | imp | ⊢ ( ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ 𝐵 ) ⊆ ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ ( 𝐴 ∨ℋ 𝐶 ) ) ) |
| 24 | 15 23 | eqsstrd | ⊢ ( ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) ⊆ ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ ( 𝐴 ∨ℋ 𝐶 ) ) ) |
| 25 | chjidm | ⊢ ( ( 𝐴 ∨ℋ 𝐶 ) ∈ Cℋ → ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ ( 𝐴 ∨ℋ 𝐶 ) ) = ( 𝐴 ∨ℋ 𝐶 ) ) | |
| 26 | 18 25 | syl | ⊢ ( 𝐶 ∈ Cℋ → ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ ( 𝐴 ∨ℋ 𝐶 ) ) = ( 𝐴 ∨ℋ 𝐶 ) ) |
| 27 | 26 | ad2antlr | ⊢ ( ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ ( 𝐴 ∨ℋ 𝐶 ) ) = ( 𝐴 ∨ℋ 𝐶 ) ) |
| 28 | 24 27 | sseqtrd | ⊢ ( ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) |
| 29 | simpr | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → 𝐶 ∈ Cℋ ) | |
| 30 | chjcl | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐵 ∨ℋ 𝐶 ) ∈ Cℋ ) | |
| 31 | chub2 | ⊢ ( ( 𝐶 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → 𝐶 ⊆ ( 𝐵 ∨ℋ 𝐶 ) ) | |
| 32 | 31 | ancoms | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → 𝐶 ⊆ ( 𝐵 ∨ℋ 𝐶 ) ) |
| 33 | chlej2 | ⊢ ( ( ( 𝐶 ∈ Cℋ ∧ ( 𝐵 ∨ℋ 𝐶 ) ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) ∧ 𝐶 ⊆ ( 𝐵 ∨ℋ 𝐶 ) ) → ( 𝐴 ∨ℋ 𝐶 ) ⊆ ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) ) | |
| 34 | 1 33 | mp3anl3 | ⊢ ( ( ( 𝐶 ∈ Cℋ ∧ ( 𝐵 ∨ℋ 𝐶 ) ∈ Cℋ ) ∧ 𝐶 ⊆ ( 𝐵 ∨ℋ 𝐶 ) ) → ( 𝐴 ∨ℋ 𝐶 ) ⊆ ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) ) |
| 35 | 29 30 32 34 | syl21anc | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ∨ℋ 𝐶 ) ⊆ ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) ) |
| 36 | 35 | adantr | ⊢ ( ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( 𝐴 ∨ℋ 𝐶 ) ⊆ ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) ) |
| 37 | 28 36 | eqssd | ⊢ ( ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) = ( 𝐴 ∨ℋ 𝐶 ) ) |
| 38 | 8 37 | sylan | ⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) = ( 𝐴 ∨ℋ 𝐶 ) ) |
| 39 | 38 | breq2d | ⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( 𝐴 ⋖ℋ ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) ↔ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐶 ) ) ) |
| 40 | 39 | adantrl | ⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ ( ¬ 𝐶 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ) → ( 𝐴 ⋖ℋ ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) ↔ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ 𝐶 ) ) ) |
| 41 | 5 40 | mpbird | ⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ ( ¬ 𝐶 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) ) → 𝐴 ⋖ℋ ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) ) |
| 42 | 41 | ex | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( ¬ 𝐶 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → 𝐴 ⋖ℋ ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) ) ) |
| 43 | 30 1 | jctil | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ∈ Cℋ ∧ ( 𝐵 ∨ℋ 𝐶 ) ∈ Cℋ ) ) |
| 44 | 6 7 43 | syl2an | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( 𝐴 ∈ Cℋ ∧ ( 𝐵 ∨ℋ 𝐶 ) ∈ Cℋ ) ) |
| 45 | cvexch | ⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐵 ∨ℋ 𝐶 ) ∈ Cℋ ) → ( ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ⋖ℋ ( 𝐵 ∨ℋ 𝐶 ) ↔ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) ) ) | |
| 46 | 44 45 | syl | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ⋖ℋ ( 𝐵 ∨ℋ 𝐶 ) ↔ 𝐴 ⋖ℋ ( 𝐴 ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) ) ) |
| 47 | 42 46 | sylibrd | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( ¬ 𝐶 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ⋖ℋ ( 𝐵 ∨ℋ 𝐶 ) ) ) |
| 48 | 47 | adantr | ⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ ¬ 𝐵 = 𝐶 ) → ( ( ¬ 𝐶 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ⋖ℋ ( 𝐵 ∨ℋ 𝐶 ) ) ) |
| 49 | chincl | ⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐵 ∨ℋ 𝐶 ) ∈ Cℋ ) → ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ∈ Cℋ ) | |
| 50 | 1 30 49 | sylancr | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ∈ Cℋ ) |
| 51 | 6 7 50 | syl2an | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ∈ Cℋ ) |
| 52 | simpl | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → 𝐵 ∈ HAtoms ) | |
| 53 | simpr | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → 𝐶 ∈ HAtoms ) | |
| 54 | atcvat2 | ⊢ ( ( ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( ¬ 𝐵 = 𝐶 ∧ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ⋖ℋ ( 𝐵 ∨ℋ 𝐶 ) ) → ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ∈ HAtoms ) ) | |
| 55 | 51 52 53 54 | syl3anc | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( ¬ 𝐵 = 𝐶 ∧ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ⋖ℋ ( 𝐵 ∨ℋ 𝐶 ) ) → ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ∈ HAtoms ) ) |
| 56 | 55 | expdimp | ⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ ¬ 𝐵 = 𝐶 ) → ( ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ⋖ℋ ( 𝐵 ∨ℋ 𝐶 ) → ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ∈ HAtoms ) ) |
| 57 | 48 56 | syld | ⊢ ( ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) ∧ ¬ 𝐵 = 𝐶 ) → ( ( ¬ 𝐶 ⊆ 𝐴 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ∈ HAtoms ) ) |
| 58 | 57 | exp4b | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ¬ 𝐵 = 𝐶 → ( ¬ 𝐶 ⊆ 𝐴 → ( 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) → ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ∈ HAtoms ) ) ) ) |
| 59 | 58 | imp4c | ⊢ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( ( ¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 ⊆ 𝐴 ) ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐶 ) ) → ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ∈ HAtoms ) ) |