This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Hilbert lattice element covered by the join of two distinct atoms is an atom. ( atcvat2i analog.) (Contributed by NM, 30-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrat2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| cvrat2.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| cvrat2.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | ||
| cvrat2.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | cvrat2 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) ) ) → 𝑋 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrat2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | cvrat2.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | cvrat2.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | |
| 4 | cvrat2.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 5 | eqid | ⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) | |
| 6 | 1 2 5 3 4 | atcvrj0 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) ) → ( 𝑋 = ( 0. ‘ 𝐾 ) ↔ 𝑃 = 𝑄 ) ) |
| 7 | 6 | 3expa | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) ) → ( 𝑋 = ( 0. ‘ 𝐾 ) ↔ 𝑃 = 𝑄 ) ) |
| 8 | 7 | necon3bid | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) ) → ( 𝑋 ≠ ( 0. ‘ 𝐾 ) ↔ 𝑃 ≠ 𝑄 ) ) |
| 9 | simpl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝐾 ∈ HL ) | |
| 10 | simpr1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑋 ∈ 𝐵 ) | |
| 11 | hllat | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝐾 ∈ Lat ) |
| 13 | simpr2 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐴 ) | |
| 14 | 1 4 | atbase | ⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
| 15 | 13 14 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐵 ) |
| 16 | simpr3 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐴 ) | |
| 17 | 1 4 | atbase | ⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
| 18 | 16 17 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐵 ) |
| 19 | 1 2 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
| 20 | 12 15 18 19 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
| 21 | eqid | ⊢ ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 ) | |
| 22 | 1 21 3 | cvrlt | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) ∧ 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) ) → 𝑋 ( lt ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) |
| 23 | 22 | ex | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) → ( 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) → 𝑋 ( lt ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) |
| 24 | 9 10 20 23 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) → 𝑋 ( lt ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) |
| 25 | 1 21 2 5 4 | cvrat | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ≠ ( 0. ‘ 𝐾 ) ∧ 𝑋 ( lt ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) → 𝑋 ∈ 𝐴 ) ) |
| 26 | 25 | expcomd | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 ( lt ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) → ( 𝑋 ≠ ( 0. ‘ 𝐾 ) → 𝑋 ∈ 𝐴 ) ) ) |
| 27 | 24 26 | syld | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) → ( 𝑋 ≠ ( 0. ‘ 𝐾 ) → 𝑋 ∈ 𝐴 ) ) ) |
| 28 | 27 | imp | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) ) → ( 𝑋 ≠ ( 0. ‘ 𝐾 ) → 𝑋 ∈ 𝐴 ) ) |
| 29 | 8 28 | sylbird | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) ) → ( 𝑃 ≠ 𝑄 → 𝑋 ∈ 𝐴 ) ) |
| 30 | 29 | ex | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) → ( 𝑃 ≠ 𝑄 → 𝑋 ∈ 𝐴 ) ) ) |
| 31 | 30 | com23 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 ≠ 𝑄 → ( 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) → 𝑋 ∈ 𝐴 ) ) ) |
| 32 | 31 | impd | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑃 ≠ 𝑄 ∧ 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) ) → 𝑋 ∈ 𝐴 ) ) |
| 33 | 32 | 3impia | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) ) ) → 𝑋 ∈ 𝐴 ) |