This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Hilbert lattice has the covering property. Proposition 1(ii) in Kalmbach p. 140 (and its converse). ( chcv1 analog.) (Contributed by NM, 17-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvr1.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| cvr1.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| cvr1.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| cvr1.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | ||
| cvr1.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | cvr1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ¬ 𝑃 ≤ 𝑋 ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvr1.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | cvr1.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | cvr1.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | cvr1.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | |
| 5 | cvr1.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 6 | hlomcmcv | ⊢ ( 𝐾 ∈ HL → ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ) | |
| 7 | 1 2 3 4 5 | cvlcvr1 | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ¬ 𝑃 ≤ 𝑋 ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ) ) |
| 8 | 6 7 | syl3an1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ¬ 𝑃 ≤ 𝑋 ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ) ) |