This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition with ` ``' ( 2nd |`( { C } X. _V ) ) turns any binary operation F with a constant first operand into a function G of the second operand only. This transformation is called "currying". (Contributed by NM, 28-Mar-2008) (Revised by Mario Carneiro, 26-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | curry1.1 | ⊢ 𝐺 = ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) | |
| Assertion | curry1 | ⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → 𝐺 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐶 𝐹 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curry1.1 | ⊢ 𝐺 = ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) | |
| 2 | fnfun | ⊢ ( 𝐹 Fn ( 𝐴 × 𝐵 ) → Fun 𝐹 ) | |
| 3 | 2ndconst | ⊢ ( 𝐶 ∈ 𝐴 → ( 2nd ↾ ( { 𝐶 } × V ) ) : ( { 𝐶 } × V ) –1-1-onto→ V ) | |
| 4 | dff1o3 | ⊢ ( ( 2nd ↾ ( { 𝐶 } × V ) ) : ( { 𝐶 } × V ) –1-1-onto→ V ↔ ( ( 2nd ↾ ( { 𝐶 } × V ) ) : ( { 𝐶 } × V ) –onto→ V ∧ Fun ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) ) | |
| 5 | 4 | simprbi | ⊢ ( ( 2nd ↾ ( { 𝐶 } × V ) ) : ( { 𝐶 } × V ) –1-1-onto→ V → Fun ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) |
| 6 | 3 5 | syl | ⊢ ( 𝐶 ∈ 𝐴 → Fun ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) |
| 7 | funco | ⊢ ( ( Fun 𝐹 ∧ Fun ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) → Fun ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) ) | |
| 8 | 2 6 7 | syl2an | ⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → Fun ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) ) |
| 9 | dmco | ⊢ dom ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) = ( ◡ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) “ dom 𝐹 ) | |
| 10 | fndm | ⊢ ( 𝐹 Fn ( 𝐴 × 𝐵 ) → dom 𝐹 = ( 𝐴 × 𝐵 ) ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → dom 𝐹 = ( 𝐴 × 𝐵 ) ) |
| 12 | 11 | imaeq2d | ⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → ( ◡ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) “ dom 𝐹 ) = ( ◡ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) “ ( 𝐴 × 𝐵 ) ) ) |
| 13 | imacnvcnv | ⊢ ( ◡ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) “ ( 𝐴 × 𝐵 ) ) = ( ( 2nd ↾ ( { 𝐶 } × V ) ) “ ( 𝐴 × 𝐵 ) ) | |
| 14 | df-ima | ⊢ ( ( 2nd ↾ ( { 𝐶 } × V ) ) “ ( 𝐴 × 𝐵 ) ) = ran ( ( 2nd ↾ ( { 𝐶 } × V ) ) ↾ ( 𝐴 × 𝐵 ) ) | |
| 15 | resres | ⊢ ( ( 2nd ↾ ( { 𝐶 } × V ) ) ↾ ( 𝐴 × 𝐵 ) ) = ( 2nd ↾ ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) ) | |
| 16 | 15 | rneqi | ⊢ ran ( ( 2nd ↾ ( { 𝐶 } × V ) ) ↾ ( 𝐴 × 𝐵 ) ) = ran ( 2nd ↾ ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) ) |
| 17 | 13 14 16 | 3eqtri | ⊢ ( ◡ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) “ ( 𝐴 × 𝐵 ) ) = ran ( 2nd ↾ ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) ) |
| 18 | inxp | ⊢ ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) = ( ( { 𝐶 } ∩ 𝐴 ) × ( V ∩ 𝐵 ) ) | |
| 19 | incom | ⊢ ( V ∩ 𝐵 ) = ( 𝐵 ∩ V ) | |
| 20 | inv1 | ⊢ ( 𝐵 ∩ V ) = 𝐵 | |
| 21 | 19 20 | eqtri | ⊢ ( V ∩ 𝐵 ) = 𝐵 |
| 22 | 21 | xpeq2i | ⊢ ( ( { 𝐶 } ∩ 𝐴 ) × ( V ∩ 𝐵 ) ) = ( ( { 𝐶 } ∩ 𝐴 ) × 𝐵 ) |
| 23 | 18 22 | eqtri | ⊢ ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) = ( ( { 𝐶 } ∩ 𝐴 ) × 𝐵 ) |
| 24 | snssi | ⊢ ( 𝐶 ∈ 𝐴 → { 𝐶 } ⊆ 𝐴 ) | |
| 25 | dfss2 | ⊢ ( { 𝐶 } ⊆ 𝐴 ↔ ( { 𝐶 } ∩ 𝐴 ) = { 𝐶 } ) | |
| 26 | 24 25 | sylib | ⊢ ( 𝐶 ∈ 𝐴 → ( { 𝐶 } ∩ 𝐴 ) = { 𝐶 } ) |
| 27 | 26 | xpeq1d | ⊢ ( 𝐶 ∈ 𝐴 → ( ( { 𝐶 } ∩ 𝐴 ) × 𝐵 ) = ( { 𝐶 } × 𝐵 ) ) |
| 28 | 23 27 | eqtrid | ⊢ ( 𝐶 ∈ 𝐴 → ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) = ( { 𝐶 } × 𝐵 ) ) |
| 29 | 28 | reseq2d | ⊢ ( 𝐶 ∈ 𝐴 → ( 2nd ↾ ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) ) = ( 2nd ↾ ( { 𝐶 } × 𝐵 ) ) ) |
| 30 | 29 | rneqd | ⊢ ( 𝐶 ∈ 𝐴 → ran ( 2nd ↾ ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) ) = ran ( 2nd ↾ ( { 𝐶 } × 𝐵 ) ) ) |
| 31 | 2ndconst | ⊢ ( 𝐶 ∈ 𝐴 → ( 2nd ↾ ( { 𝐶 } × 𝐵 ) ) : ( { 𝐶 } × 𝐵 ) –1-1-onto→ 𝐵 ) | |
| 32 | f1ofo | ⊢ ( ( 2nd ↾ ( { 𝐶 } × 𝐵 ) ) : ( { 𝐶 } × 𝐵 ) –1-1-onto→ 𝐵 → ( 2nd ↾ ( { 𝐶 } × 𝐵 ) ) : ( { 𝐶 } × 𝐵 ) –onto→ 𝐵 ) | |
| 33 | forn | ⊢ ( ( 2nd ↾ ( { 𝐶 } × 𝐵 ) ) : ( { 𝐶 } × 𝐵 ) –onto→ 𝐵 → ran ( 2nd ↾ ( { 𝐶 } × 𝐵 ) ) = 𝐵 ) | |
| 34 | 31 32 33 | 3syl | ⊢ ( 𝐶 ∈ 𝐴 → ran ( 2nd ↾ ( { 𝐶 } × 𝐵 ) ) = 𝐵 ) |
| 35 | 30 34 | eqtrd | ⊢ ( 𝐶 ∈ 𝐴 → ran ( 2nd ↾ ( ( { 𝐶 } × V ) ∩ ( 𝐴 × 𝐵 ) ) ) = 𝐵 ) |
| 36 | 17 35 | eqtrid | ⊢ ( 𝐶 ∈ 𝐴 → ( ◡ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) “ ( 𝐴 × 𝐵 ) ) = 𝐵 ) |
| 37 | 36 | adantl | ⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → ( ◡ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) “ ( 𝐴 × 𝐵 ) ) = 𝐵 ) |
| 38 | 12 37 | eqtrd | ⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → ( ◡ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) “ dom 𝐹 ) = 𝐵 ) |
| 39 | 9 38 | eqtrid | ⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → dom ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) = 𝐵 ) |
| 40 | 1 | fneq1i | ⊢ ( 𝐺 Fn 𝐵 ↔ ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) Fn 𝐵 ) |
| 41 | df-fn | ⊢ ( ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) Fn 𝐵 ↔ ( Fun ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) ∧ dom ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) = 𝐵 ) ) | |
| 42 | 40 41 | bitri | ⊢ ( 𝐺 Fn 𝐵 ↔ ( Fun ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) ∧ dom ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) = 𝐵 ) ) |
| 43 | 8 39 42 | sylanbrc | ⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → 𝐺 Fn 𝐵 ) |
| 44 | dffn5 | ⊢ ( 𝐺 Fn 𝐵 ↔ 𝐺 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐺 ‘ 𝑥 ) ) ) | |
| 45 | 43 44 | sylib | ⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → 𝐺 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 46 | 1 | fveq1i | ⊢ ( 𝐺 ‘ 𝑥 ) = ( ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) ‘ 𝑥 ) |
| 47 | dff1o4 | ⊢ ( ( 2nd ↾ ( { 𝐶 } × V ) ) : ( { 𝐶 } × V ) –1-1-onto→ V ↔ ( ( 2nd ↾ ( { 𝐶 } × V ) ) Fn ( { 𝐶 } × V ) ∧ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) Fn V ) ) | |
| 48 | 3 47 | sylib | ⊢ ( 𝐶 ∈ 𝐴 → ( ( 2nd ↾ ( { 𝐶 } × V ) ) Fn ( { 𝐶 } × V ) ∧ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) Fn V ) ) |
| 49 | fvco2 | ⊢ ( ( ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) Fn V ∧ 𝑥 ∈ V ) → ( ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) ‘ 𝑥 ) = ( 𝐹 ‘ ( ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) ) ) | |
| 50 | 49 | elvd | ⊢ ( ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) Fn V → ( ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) ‘ 𝑥 ) = ( 𝐹 ‘ ( ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) ) ) |
| 51 | 48 50 | simpl2im | ⊢ ( 𝐶 ∈ 𝐴 → ( ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) ‘ 𝑥 ) = ( 𝐹 ‘ ( ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) ) ) |
| 52 | 51 | ad2antlr | ⊢ ( ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐹 ∘ ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ) ‘ 𝑥 ) = ( 𝐹 ‘ ( ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) ) ) |
| 53 | 46 52 | eqtrid | ⊢ ( ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐹 ‘ ( ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) ) ) |
| 54 | 3 | adantr | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( 2nd ↾ ( { 𝐶 } × V ) ) : ( { 𝐶 } × V ) –1-1-onto→ V ) |
| 55 | snidg | ⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ { 𝐶 } ) | |
| 56 | vex | ⊢ 𝑥 ∈ V | |
| 57 | opelxp | ⊢ ( 〈 𝐶 , 𝑥 〉 ∈ ( { 𝐶 } × V ) ↔ ( 𝐶 ∈ { 𝐶 } ∧ 𝑥 ∈ V ) ) | |
| 58 | 55 56 57 | sylanblrc | ⊢ ( 𝐶 ∈ 𝐴 → 〈 𝐶 , 𝑥 〉 ∈ ( { 𝐶 } × V ) ) |
| 59 | 58 | adantr | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 〈 𝐶 , 𝑥 〉 ∈ ( { 𝐶 } × V ) ) |
| 60 | 54 59 | jca | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( ( 2nd ↾ ( { 𝐶 } × V ) ) : ( { 𝐶 } × V ) –1-1-onto→ V ∧ 〈 𝐶 , 𝑥 〉 ∈ ( { 𝐶 } × V ) ) ) |
| 61 | 58 | fvresd | ⊢ ( 𝐶 ∈ 𝐴 → ( ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 〈 𝐶 , 𝑥 〉 ) = ( 2nd ‘ 〈 𝐶 , 𝑥 〉 ) ) |
| 62 | op2ndg | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝑥 ∈ V ) → ( 2nd ‘ 〈 𝐶 , 𝑥 〉 ) = 𝑥 ) | |
| 63 | 62 | elvd | ⊢ ( 𝐶 ∈ 𝐴 → ( 2nd ‘ 〈 𝐶 , 𝑥 〉 ) = 𝑥 ) |
| 64 | 61 63 | eqtrd | ⊢ ( 𝐶 ∈ 𝐴 → ( ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 〈 𝐶 , 𝑥 〉 ) = 𝑥 ) |
| 65 | 64 | adantr | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 〈 𝐶 , 𝑥 〉 ) = 𝑥 ) |
| 66 | f1ocnvfv | ⊢ ( ( ( 2nd ↾ ( { 𝐶 } × V ) ) : ( { 𝐶 } × V ) –1-1-onto→ V ∧ 〈 𝐶 , 𝑥 〉 ∈ ( { 𝐶 } × V ) ) → ( ( ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 〈 𝐶 , 𝑥 〉 ) = 𝑥 → ( ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) = 〈 𝐶 , 𝑥 〉 ) ) | |
| 67 | 60 65 66 | sylc | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) = 〈 𝐶 , 𝑥 〉 ) |
| 68 | 67 | fveq2d | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) ) = ( 𝐹 ‘ 〈 𝐶 , 𝑥 〉 ) ) |
| 69 | 68 | adantll | ⊢ ( ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) ) = ( 𝐹 ‘ 〈 𝐶 , 𝑥 〉 ) ) |
| 70 | df-ov | ⊢ ( 𝐶 𝐹 𝑥 ) = ( 𝐹 ‘ 〈 𝐶 , 𝑥 〉 ) | |
| 71 | 69 70 | eqtr4di | ⊢ ( ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ ( 2nd ↾ ( { 𝐶 } × V ) ) ‘ 𝑥 ) ) = ( 𝐶 𝐹 𝑥 ) ) |
| 72 | 53 71 | eqtrd | ⊢ ( ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐶 𝐹 𝑥 ) ) |
| 73 | 72 | mpteq2dva | ⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝐺 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝐶 𝐹 𝑥 ) ) ) |
| 74 | 45 73 | eqtrd | ⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ 𝐶 ∈ 𝐴 ) → 𝐺 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐶 𝐹 𝑥 ) ) ) |