This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition with ` ``' ( 2nd |`( { C } X. _V ) ) turns any binary operation F with a constant first operand into a function G of the second operand only. This transformation is called "currying". (Contributed by NM, 28-Mar-2008) (Revised by Mario Carneiro, 26-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | curry1.1 | |- G = ( F o. `' ( 2nd |` ( { C } X. _V ) ) ) |
|
| Assertion | curry1 | |- ( ( F Fn ( A X. B ) /\ C e. A ) -> G = ( x e. B |-> ( C F x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curry1.1 | |- G = ( F o. `' ( 2nd |` ( { C } X. _V ) ) ) |
|
| 2 | fnfun | |- ( F Fn ( A X. B ) -> Fun F ) |
|
| 3 | 2ndconst | |- ( C e. A -> ( 2nd |` ( { C } X. _V ) ) : ( { C } X. _V ) -1-1-onto-> _V ) |
|
| 4 | dff1o3 | |- ( ( 2nd |` ( { C } X. _V ) ) : ( { C } X. _V ) -1-1-onto-> _V <-> ( ( 2nd |` ( { C } X. _V ) ) : ( { C } X. _V ) -onto-> _V /\ Fun `' ( 2nd |` ( { C } X. _V ) ) ) ) |
|
| 5 | 4 | simprbi | |- ( ( 2nd |` ( { C } X. _V ) ) : ( { C } X. _V ) -1-1-onto-> _V -> Fun `' ( 2nd |` ( { C } X. _V ) ) ) |
| 6 | 3 5 | syl | |- ( C e. A -> Fun `' ( 2nd |` ( { C } X. _V ) ) ) |
| 7 | funco | |- ( ( Fun F /\ Fun `' ( 2nd |` ( { C } X. _V ) ) ) -> Fun ( F o. `' ( 2nd |` ( { C } X. _V ) ) ) ) |
|
| 8 | 2 6 7 | syl2an | |- ( ( F Fn ( A X. B ) /\ C e. A ) -> Fun ( F o. `' ( 2nd |` ( { C } X. _V ) ) ) ) |
| 9 | dmco | |- dom ( F o. `' ( 2nd |` ( { C } X. _V ) ) ) = ( `' `' ( 2nd |` ( { C } X. _V ) ) " dom F ) |
|
| 10 | fndm | |- ( F Fn ( A X. B ) -> dom F = ( A X. B ) ) |
|
| 11 | 10 | adantr | |- ( ( F Fn ( A X. B ) /\ C e. A ) -> dom F = ( A X. B ) ) |
| 12 | 11 | imaeq2d | |- ( ( F Fn ( A X. B ) /\ C e. A ) -> ( `' `' ( 2nd |` ( { C } X. _V ) ) " dom F ) = ( `' `' ( 2nd |` ( { C } X. _V ) ) " ( A X. B ) ) ) |
| 13 | imacnvcnv | |- ( `' `' ( 2nd |` ( { C } X. _V ) ) " ( A X. B ) ) = ( ( 2nd |` ( { C } X. _V ) ) " ( A X. B ) ) |
|
| 14 | df-ima | |- ( ( 2nd |` ( { C } X. _V ) ) " ( A X. B ) ) = ran ( ( 2nd |` ( { C } X. _V ) ) |` ( A X. B ) ) |
|
| 15 | resres | |- ( ( 2nd |` ( { C } X. _V ) ) |` ( A X. B ) ) = ( 2nd |` ( ( { C } X. _V ) i^i ( A X. B ) ) ) |
|
| 16 | 15 | rneqi | |- ran ( ( 2nd |` ( { C } X. _V ) ) |` ( A X. B ) ) = ran ( 2nd |` ( ( { C } X. _V ) i^i ( A X. B ) ) ) |
| 17 | 13 14 16 | 3eqtri | |- ( `' `' ( 2nd |` ( { C } X. _V ) ) " ( A X. B ) ) = ran ( 2nd |` ( ( { C } X. _V ) i^i ( A X. B ) ) ) |
| 18 | inxp | |- ( ( { C } X. _V ) i^i ( A X. B ) ) = ( ( { C } i^i A ) X. ( _V i^i B ) ) |
|
| 19 | incom | |- ( _V i^i B ) = ( B i^i _V ) |
|
| 20 | inv1 | |- ( B i^i _V ) = B |
|
| 21 | 19 20 | eqtri | |- ( _V i^i B ) = B |
| 22 | 21 | xpeq2i | |- ( ( { C } i^i A ) X. ( _V i^i B ) ) = ( ( { C } i^i A ) X. B ) |
| 23 | 18 22 | eqtri | |- ( ( { C } X. _V ) i^i ( A X. B ) ) = ( ( { C } i^i A ) X. B ) |
| 24 | snssi | |- ( C e. A -> { C } C_ A ) |
|
| 25 | dfss2 | |- ( { C } C_ A <-> ( { C } i^i A ) = { C } ) |
|
| 26 | 24 25 | sylib | |- ( C e. A -> ( { C } i^i A ) = { C } ) |
| 27 | 26 | xpeq1d | |- ( C e. A -> ( ( { C } i^i A ) X. B ) = ( { C } X. B ) ) |
| 28 | 23 27 | eqtrid | |- ( C e. A -> ( ( { C } X. _V ) i^i ( A X. B ) ) = ( { C } X. B ) ) |
| 29 | 28 | reseq2d | |- ( C e. A -> ( 2nd |` ( ( { C } X. _V ) i^i ( A X. B ) ) ) = ( 2nd |` ( { C } X. B ) ) ) |
| 30 | 29 | rneqd | |- ( C e. A -> ran ( 2nd |` ( ( { C } X. _V ) i^i ( A X. B ) ) ) = ran ( 2nd |` ( { C } X. B ) ) ) |
| 31 | 2ndconst | |- ( C e. A -> ( 2nd |` ( { C } X. B ) ) : ( { C } X. B ) -1-1-onto-> B ) |
|
| 32 | f1ofo | |- ( ( 2nd |` ( { C } X. B ) ) : ( { C } X. B ) -1-1-onto-> B -> ( 2nd |` ( { C } X. B ) ) : ( { C } X. B ) -onto-> B ) |
|
| 33 | forn | |- ( ( 2nd |` ( { C } X. B ) ) : ( { C } X. B ) -onto-> B -> ran ( 2nd |` ( { C } X. B ) ) = B ) |
|
| 34 | 31 32 33 | 3syl | |- ( C e. A -> ran ( 2nd |` ( { C } X. B ) ) = B ) |
| 35 | 30 34 | eqtrd | |- ( C e. A -> ran ( 2nd |` ( ( { C } X. _V ) i^i ( A X. B ) ) ) = B ) |
| 36 | 17 35 | eqtrid | |- ( C e. A -> ( `' `' ( 2nd |` ( { C } X. _V ) ) " ( A X. B ) ) = B ) |
| 37 | 36 | adantl | |- ( ( F Fn ( A X. B ) /\ C e. A ) -> ( `' `' ( 2nd |` ( { C } X. _V ) ) " ( A X. B ) ) = B ) |
| 38 | 12 37 | eqtrd | |- ( ( F Fn ( A X. B ) /\ C e. A ) -> ( `' `' ( 2nd |` ( { C } X. _V ) ) " dom F ) = B ) |
| 39 | 9 38 | eqtrid | |- ( ( F Fn ( A X. B ) /\ C e. A ) -> dom ( F o. `' ( 2nd |` ( { C } X. _V ) ) ) = B ) |
| 40 | 1 | fneq1i | |- ( G Fn B <-> ( F o. `' ( 2nd |` ( { C } X. _V ) ) ) Fn B ) |
| 41 | df-fn | |- ( ( F o. `' ( 2nd |` ( { C } X. _V ) ) ) Fn B <-> ( Fun ( F o. `' ( 2nd |` ( { C } X. _V ) ) ) /\ dom ( F o. `' ( 2nd |` ( { C } X. _V ) ) ) = B ) ) |
|
| 42 | 40 41 | bitri | |- ( G Fn B <-> ( Fun ( F o. `' ( 2nd |` ( { C } X. _V ) ) ) /\ dom ( F o. `' ( 2nd |` ( { C } X. _V ) ) ) = B ) ) |
| 43 | 8 39 42 | sylanbrc | |- ( ( F Fn ( A X. B ) /\ C e. A ) -> G Fn B ) |
| 44 | dffn5 | |- ( G Fn B <-> G = ( x e. B |-> ( G ` x ) ) ) |
|
| 45 | 43 44 | sylib | |- ( ( F Fn ( A X. B ) /\ C e. A ) -> G = ( x e. B |-> ( G ` x ) ) ) |
| 46 | 1 | fveq1i | |- ( G ` x ) = ( ( F o. `' ( 2nd |` ( { C } X. _V ) ) ) ` x ) |
| 47 | dff1o4 | |- ( ( 2nd |` ( { C } X. _V ) ) : ( { C } X. _V ) -1-1-onto-> _V <-> ( ( 2nd |` ( { C } X. _V ) ) Fn ( { C } X. _V ) /\ `' ( 2nd |` ( { C } X. _V ) ) Fn _V ) ) |
|
| 48 | 3 47 | sylib | |- ( C e. A -> ( ( 2nd |` ( { C } X. _V ) ) Fn ( { C } X. _V ) /\ `' ( 2nd |` ( { C } X. _V ) ) Fn _V ) ) |
| 49 | fvco2 | |- ( ( `' ( 2nd |` ( { C } X. _V ) ) Fn _V /\ x e. _V ) -> ( ( F o. `' ( 2nd |` ( { C } X. _V ) ) ) ` x ) = ( F ` ( `' ( 2nd |` ( { C } X. _V ) ) ` x ) ) ) |
|
| 50 | 49 | elvd | |- ( `' ( 2nd |` ( { C } X. _V ) ) Fn _V -> ( ( F o. `' ( 2nd |` ( { C } X. _V ) ) ) ` x ) = ( F ` ( `' ( 2nd |` ( { C } X. _V ) ) ` x ) ) ) |
| 51 | 48 50 | simpl2im | |- ( C e. A -> ( ( F o. `' ( 2nd |` ( { C } X. _V ) ) ) ` x ) = ( F ` ( `' ( 2nd |` ( { C } X. _V ) ) ` x ) ) ) |
| 52 | 51 | ad2antlr | |- ( ( ( F Fn ( A X. B ) /\ C e. A ) /\ x e. B ) -> ( ( F o. `' ( 2nd |` ( { C } X. _V ) ) ) ` x ) = ( F ` ( `' ( 2nd |` ( { C } X. _V ) ) ` x ) ) ) |
| 53 | 46 52 | eqtrid | |- ( ( ( F Fn ( A X. B ) /\ C e. A ) /\ x e. B ) -> ( G ` x ) = ( F ` ( `' ( 2nd |` ( { C } X. _V ) ) ` x ) ) ) |
| 54 | 3 | adantr | |- ( ( C e. A /\ x e. B ) -> ( 2nd |` ( { C } X. _V ) ) : ( { C } X. _V ) -1-1-onto-> _V ) |
| 55 | snidg | |- ( C e. A -> C e. { C } ) |
|
| 56 | vex | |- x e. _V |
|
| 57 | opelxp | |- ( <. C , x >. e. ( { C } X. _V ) <-> ( C e. { C } /\ x e. _V ) ) |
|
| 58 | 55 56 57 | sylanblrc | |- ( C e. A -> <. C , x >. e. ( { C } X. _V ) ) |
| 59 | 58 | adantr | |- ( ( C e. A /\ x e. B ) -> <. C , x >. e. ( { C } X. _V ) ) |
| 60 | 54 59 | jca | |- ( ( C e. A /\ x e. B ) -> ( ( 2nd |` ( { C } X. _V ) ) : ( { C } X. _V ) -1-1-onto-> _V /\ <. C , x >. e. ( { C } X. _V ) ) ) |
| 61 | 58 | fvresd | |- ( C e. A -> ( ( 2nd |` ( { C } X. _V ) ) ` <. C , x >. ) = ( 2nd ` <. C , x >. ) ) |
| 62 | op2ndg | |- ( ( C e. A /\ x e. _V ) -> ( 2nd ` <. C , x >. ) = x ) |
|
| 63 | 62 | elvd | |- ( C e. A -> ( 2nd ` <. C , x >. ) = x ) |
| 64 | 61 63 | eqtrd | |- ( C e. A -> ( ( 2nd |` ( { C } X. _V ) ) ` <. C , x >. ) = x ) |
| 65 | 64 | adantr | |- ( ( C e. A /\ x e. B ) -> ( ( 2nd |` ( { C } X. _V ) ) ` <. C , x >. ) = x ) |
| 66 | f1ocnvfv | |- ( ( ( 2nd |` ( { C } X. _V ) ) : ( { C } X. _V ) -1-1-onto-> _V /\ <. C , x >. e. ( { C } X. _V ) ) -> ( ( ( 2nd |` ( { C } X. _V ) ) ` <. C , x >. ) = x -> ( `' ( 2nd |` ( { C } X. _V ) ) ` x ) = <. C , x >. ) ) |
|
| 67 | 60 65 66 | sylc | |- ( ( C e. A /\ x e. B ) -> ( `' ( 2nd |` ( { C } X. _V ) ) ` x ) = <. C , x >. ) |
| 68 | 67 | fveq2d | |- ( ( C e. A /\ x e. B ) -> ( F ` ( `' ( 2nd |` ( { C } X. _V ) ) ` x ) ) = ( F ` <. C , x >. ) ) |
| 69 | 68 | adantll | |- ( ( ( F Fn ( A X. B ) /\ C e. A ) /\ x e. B ) -> ( F ` ( `' ( 2nd |` ( { C } X. _V ) ) ` x ) ) = ( F ` <. C , x >. ) ) |
| 70 | df-ov | |- ( C F x ) = ( F ` <. C , x >. ) |
|
| 71 | 69 70 | eqtr4di | |- ( ( ( F Fn ( A X. B ) /\ C e. A ) /\ x e. B ) -> ( F ` ( `' ( 2nd |` ( { C } X. _V ) ) ` x ) ) = ( C F x ) ) |
| 72 | 53 71 | eqtrd | |- ( ( ( F Fn ( A X. B ) /\ C e. A ) /\ x e. B ) -> ( G ` x ) = ( C F x ) ) |
| 73 | 72 | mpteq2dva | |- ( ( F Fn ( A X. B ) /\ C e. A ) -> ( x e. B |-> ( G ` x ) ) = ( x e. B |-> ( C F x ) ) ) |
| 74 | 45 73 | eqtrd | |- ( ( F Fn ( A X. B ) /\ C e. A ) -> G = ( x e. B |-> ( C F x ) ) ) |