This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A "closed subspace" in a subcomplex pre-Hilbert space is actually closed in the topology induced by the norm, thus justifying the terminology "closed subspace". (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | csscld.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
| csscld.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | ||
| Assertion | csscld | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csscld.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
| 2 | csscld.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) | |
| 4 | 3 1 | cssi | ⊢ ( 𝑆 ∈ 𝐶 → 𝑆 = ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) ) |
| 5 | 4 | adantl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → 𝑆 = ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) ) |
| 6 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 7 | 6 3 | ocvss | ⊢ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ⊆ ( Base ‘ 𝑊 ) |
| 8 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 9 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 10 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 11 | 6 8 9 10 3 | ocvval | ⊢ ( ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ⊆ ( Base ‘ 𝑊 ) → ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) = { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ∀ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
| 12 | 7 11 | mp1i | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) = { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ∀ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
| 13 | riinrab | ⊢ ( ( Base ‘ 𝑊 ) ∩ ∩ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) = { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ∀ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } | |
| 14 | 12 13 | eqtr4di | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) = ( ( Base ‘ 𝑊 ) ∩ ∩ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) |
| 15 | cphnlm | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod ) | |
| 16 | 15 | adantr | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → 𝑊 ∈ NrmMod ) |
| 17 | nlmngp | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp ) | |
| 18 | ngptps | ⊢ ( 𝑊 ∈ NrmGrp → 𝑊 ∈ TopSp ) | |
| 19 | 16 17 18 | 3syl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → 𝑊 ∈ TopSp ) |
| 20 | 6 2 | istps | ⊢ ( 𝑊 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ) |
| 21 | 19 20 | sylib | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ) |
| 22 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) → ( Base ‘ 𝑊 ) = ∪ 𝐽 ) | |
| 23 | 21 22 | syl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → ( Base ‘ 𝑊 ) = ∪ 𝐽 ) |
| 24 | 23 | ineq1d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → ( ( Base ‘ 𝑊 ) ∩ ∩ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) = ( ∪ 𝐽 ∩ ∩ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) |
| 25 | 5 14 24 | 3eqtrd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → 𝑆 = ( ∪ 𝐽 ∩ ∩ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) |
| 26 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) → 𝐽 ∈ Top ) | |
| 27 | 21 26 | syl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → 𝐽 ∈ Top ) |
| 28 | 7 | sseli | ⊢ ( 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 29 | fvex | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∈ V | |
| 30 | eqid | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) | |
| 31 | 30 | mptiniseg | ⊢ ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∈ V → ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) “ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) = { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
| 32 | 29 31 | ax-mp | ⊢ ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) “ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) = { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } |
| 33 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 34 | simpll | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → 𝑊 ∈ ℂPreHil ) | |
| 35 | 21 | adantr | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ) |
| 36 | 35 | cnmptid | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ 𝑥 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 37 | simpr | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) | |
| 38 | 35 35 37 | cnmptc | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ 𝑦 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 39 | 2 33 8 34 35 36 38 | cnmpt1ip | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 40 | 33 | cnfldhaus | ⊢ ( TopOpen ‘ ℂfld ) ∈ Haus |
| 41 | cphclm | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) | |
| 42 | 9 | clm0 | ⊢ ( 𝑊 ∈ ℂMod → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 43 | 41 42 | syl | ⊢ ( 𝑊 ∈ ℂPreHil → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 44 | 43 | ad2antrr | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 45 | 0cn | ⊢ 0 ∈ ℂ | |
| 46 | 44 45 | eqeltrrdi | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∈ ℂ ) |
| 47 | unicntop | ⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) | |
| 48 | 47 | sncld | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Haus ∧ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∈ ℂ ) → { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
| 49 | 40 46 48 | sylancr | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
| 50 | cnclima | ⊢ ( ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ∧ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) → ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) “ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ∈ ( Clsd ‘ 𝐽 ) ) | |
| 51 | 39 49 50 | syl2anc | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) “ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 52 | 32 51 | eqeltrrid | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ 𝐽 ) ) |
| 53 | 28 52 | sylan2 | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) → { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ 𝐽 ) ) |
| 54 | 53 | ralrimiva | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → ∀ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ 𝐽 ) ) |
| 55 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 56 | 55 | riincld | ⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ 𝐽 ∩ ∩ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 57 | 27 54 56 | syl2anc | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → ( ∪ 𝐽 ∩ ∩ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 58 | 25 57 | eqeltrd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) |