This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relative intersection of a relative abstraction. (Contributed by Stefan O'Rear, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | riinrab | ⊢ ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) = { 𝑦 ∈ 𝐴 ∣ ∀ 𝑥 ∈ 𝑋 𝜑 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riin0 | ⊢ ( 𝑋 = ∅ → ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) = 𝐴 ) | |
| 2 | rzal | ⊢ ( 𝑋 = ∅ → ∀ 𝑥 ∈ 𝑋 𝜑 ) | |
| 3 | 2 | ralrimivw | ⊢ ( 𝑋 = ∅ → ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝑋 𝜑 ) |
| 4 | rabid2 | ⊢ ( 𝐴 = { 𝑦 ∈ 𝐴 ∣ ∀ 𝑥 ∈ 𝑋 𝜑 } ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝑋 𝜑 ) | |
| 5 | 3 4 | sylibr | ⊢ ( 𝑋 = ∅ → 𝐴 = { 𝑦 ∈ 𝐴 ∣ ∀ 𝑥 ∈ 𝑋 𝜑 } ) |
| 6 | 1 5 | eqtrd | ⊢ ( 𝑋 = ∅ → ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) = { 𝑦 ∈ 𝐴 ∣ ∀ 𝑥 ∈ 𝑋 𝜑 } ) |
| 7 | ssrab2 | ⊢ { 𝑦 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 | |
| 8 | 7 | rgenw | ⊢ ∀ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 |
| 9 | riinn0 | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 ∧ 𝑋 ≠ ∅ ) → ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) = ∩ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) | |
| 10 | 8 9 | mpan | ⊢ ( 𝑋 ≠ ∅ → ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) = ∩ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) |
| 11 | iinrab | ⊢ ( 𝑋 ≠ ∅ → ∩ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝜑 } = { 𝑦 ∈ 𝐴 ∣ ∀ 𝑥 ∈ 𝑋 𝜑 } ) | |
| 12 | 10 11 | eqtrd | ⊢ ( 𝑋 ≠ ∅ → ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) = { 𝑦 ∈ 𝐴 ∣ ∀ 𝑥 ∈ 𝑋 𝜑 } ) |
| 13 | 6 12 | pm2.61ine | ⊢ ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝜑 } ) = { 𝑦 ∈ 𝐴 ∣ ∀ 𝑥 ∈ 𝑋 𝜑 } |