This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the orthocomplement of a subset (normally a subspace) of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ocvfval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| ocvfval.i | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| ocvfval.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| ocvfval.z | ⊢ 0 = ( 0g ‘ 𝐹 ) | ||
| ocvfval.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | ||
| Assertion | ocvval | ⊢ ( 𝑆 ⊆ 𝑉 → ( ⊥ ‘ 𝑆 ) = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvfval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | ocvfval.i | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | ocvfval.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | ocvfval.z | ⊢ 0 = ( 0g ‘ 𝐹 ) | |
| 5 | ocvfval.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| 6 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 7 | 6 | elpw2 | ⊢ ( 𝑆 ∈ 𝒫 𝑉 ↔ 𝑆 ⊆ 𝑉 ) |
| 8 | 1 2 3 4 5 | ocvfval | ⊢ ( 𝑊 ∈ V → ⊥ = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) ) |
| 9 | 8 | fveq1d | ⊢ ( 𝑊 ∈ V → ( ⊥ ‘ 𝑆 ) = ( ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) ‘ 𝑆 ) ) |
| 10 | raleq | ⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 ) ) | |
| 11 | 10 | rabbidv | ⊢ ( 𝑠 = 𝑆 → { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 } ) |
| 12 | eqid | ⊢ ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) | |
| 13 | 6 | rabex | ⊢ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 } ∈ V |
| 14 | 11 12 13 | fvmpt | ⊢ ( 𝑆 ∈ 𝒫 𝑉 → ( ( 𝑠 ∈ 𝒫 𝑉 ↦ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑠 ( 𝑥 , 𝑦 ) = 0 } ) ‘ 𝑆 ) = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 } ) |
| 15 | 9 14 | sylan9eq | ⊢ ( ( 𝑊 ∈ V ∧ 𝑆 ∈ 𝒫 𝑉 ) → ( ⊥ ‘ 𝑆 ) = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 } ) |
| 16 | 0fv | ⊢ ( ∅ ‘ 𝑆 ) = ∅ | |
| 17 | fvprc | ⊢ ( ¬ 𝑊 ∈ V → ( ocv ‘ 𝑊 ) = ∅ ) | |
| 18 | 5 17 | eqtrid | ⊢ ( ¬ 𝑊 ∈ V → ⊥ = ∅ ) |
| 19 | 18 | fveq1d | ⊢ ( ¬ 𝑊 ∈ V → ( ⊥ ‘ 𝑆 ) = ( ∅ ‘ 𝑆 ) ) |
| 20 | ssrab2 | ⊢ { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 } ⊆ 𝑉 | |
| 21 | fvprc | ⊢ ( ¬ 𝑊 ∈ V → ( Base ‘ 𝑊 ) = ∅ ) | |
| 22 | 1 21 | eqtrid | ⊢ ( ¬ 𝑊 ∈ V → 𝑉 = ∅ ) |
| 23 | sseq0 | ⊢ ( ( { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 } ⊆ 𝑉 ∧ 𝑉 = ∅ ) → { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 } = ∅ ) | |
| 24 | 20 22 23 | sylancr | ⊢ ( ¬ 𝑊 ∈ V → { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 } = ∅ ) |
| 25 | 16 19 24 | 3eqtr4a | ⊢ ( ¬ 𝑊 ∈ V → ( ⊥ ‘ 𝑆 ) = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 } ) |
| 26 | 25 | adantr | ⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝑆 ∈ 𝒫 𝑉 ) → ( ⊥ ‘ 𝑆 ) = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 } ) |
| 27 | 15 26 | pm2.61ian | ⊢ ( 𝑆 ∈ 𝒫 𝑉 → ( ⊥ ‘ 𝑆 ) = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 } ) |
| 28 | 7 27 | sylbir | ⊢ ( 𝑆 ⊆ 𝑉 → ( ⊥ ‘ 𝑆 ) = { 𝑥 ∈ 𝑉 ∣ ∀ 𝑦 ∈ 𝑆 ( 𝑥 , 𝑦 ) = 0 } ) |