This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A "closed subspace" in a subcomplex pre-Hilbert space is actually closed in the topology induced by the norm, thus justifying the terminology "closed subspace". (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | csscld.c | |- C = ( ClSubSp ` W ) |
|
| csscld.j | |- J = ( TopOpen ` W ) |
||
| Assertion | csscld | |- ( ( W e. CPreHil /\ S e. C ) -> S e. ( Clsd ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csscld.c | |- C = ( ClSubSp ` W ) |
|
| 2 | csscld.j | |- J = ( TopOpen ` W ) |
|
| 3 | eqid | |- ( ocv ` W ) = ( ocv ` W ) |
|
| 4 | 3 1 | cssi | |- ( S e. C -> S = ( ( ocv ` W ) ` ( ( ocv ` W ) ` S ) ) ) |
| 5 | 4 | adantl | |- ( ( W e. CPreHil /\ S e. C ) -> S = ( ( ocv ` W ) ` ( ( ocv ` W ) ` S ) ) ) |
| 6 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 7 | 6 3 | ocvss | |- ( ( ocv ` W ) ` S ) C_ ( Base ` W ) |
| 8 | eqid | |- ( .i ` W ) = ( .i ` W ) |
|
| 9 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 10 | eqid | |- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
|
| 11 | 6 8 9 10 3 | ocvval | |- ( ( ( ocv ` W ) ` S ) C_ ( Base ` W ) -> ( ( ocv ` W ) ` ( ( ocv ` W ) ` S ) ) = { x e. ( Base ` W ) | A. y e. ( ( ocv ` W ) ` S ) ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) } ) |
| 12 | 7 11 | mp1i | |- ( ( W e. CPreHil /\ S e. C ) -> ( ( ocv ` W ) ` ( ( ocv ` W ) ` S ) ) = { x e. ( Base ` W ) | A. y e. ( ( ocv ` W ) ` S ) ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) } ) |
| 13 | riinrab | |- ( ( Base ` W ) i^i |^|_ y e. ( ( ocv ` W ) ` S ) { x e. ( Base ` W ) | ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) } ) = { x e. ( Base ` W ) | A. y e. ( ( ocv ` W ) ` S ) ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) } |
|
| 14 | 12 13 | eqtr4di | |- ( ( W e. CPreHil /\ S e. C ) -> ( ( ocv ` W ) ` ( ( ocv ` W ) ` S ) ) = ( ( Base ` W ) i^i |^|_ y e. ( ( ocv ` W ) ` S ) { x e. ( Base ` W ) | ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) } ) ) |
| 15 | cphnlm | |- ( W e. CPreHil -> W e. NrmMod ) |
|
| 16 | 15 | adantr | |- ( ( W e. CPreHil /\ S e. C ) -> W e. NrmMod ) |
| 17 | nlmngp | |- ( W e. NrmMod -> W e. NrmGrp ) |
|
| 18 | ngptps | |- ( W e. NrmGrp -> W e. TopSp ) |
|
| 19 | 16 17 18 | 3syl | |- ( ( W e. CPreHil /\ S e. C ) -> W e. TopSp ) |
| 20 | 6 2 | istps | |- ( W e. TopSp <-> J e. ( TopOn ` ( Base ` W ) ) ) |
| 21 | 19 20 | sylib | |- ( ( W e. CPreHil /\ S e. C ) -> J e. ( TopOn ` ( Base ` W ) ) ) |
| 22 | toponuni | |- ( J e. ( TopOn ` ( Base ` W ) ) -> ( Base ` W ) = U. J ) |
|
| 23 | 21 22 | syl | |- ( ( W e. CPreHil /\ S e. C ) -> ( Base ` W ) = U. J ) |
| 24 | 23 | ineq1d | |- ( ( W e. CPreHil /\ S e. C ) -> ( ( Base ` W ) i^i |^|_ y e. ( ( ocv ` W ) ` S ) { x e. ( Base ` W ) | ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) } ) = ( U. J i^i |^|_ y e. ( ( ocv ` W ) ` S ) { x e. ( Base ` W ) | ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) } ) ) |
| 25 | 5 14 24 | 3eqtrd | |- ( ( W e. CPreHil /\ S e. C ) -> S = ( U. J i^i |^|_ y e. ( ( ocv ` W ) ` S ) { x e. ( Base ` W ) | ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) } ) ) |
| 26 | topontop | |- ( J e. ( TopOn ` ( Base ` W ) ) -> J e. Top ) |
|
| 27 | 21 26 | syl | |- ( ( W e. CPreHil /\ S e. C ) -> J e. Top ) |
| 28 | 7 | sseli | |- ( y e. ( ( ocv ` W ) ` S ) -> y e. ( Base ` W ) ) |
| 29 | fvex | |- ( 0g ` ( Scalar ` W ) ) e. _V |
|
| 30 | eqid | |- ( x e. ( Base ` W ) |-> ( x ( .i ` W ) y ) ) = ( x e. ( Base ` W ) |-> ( x ( .i ` W ) y ) ) |
|
| 31 | 30 | mptiniseg | |- ( ( 0g ` ( Scalar ` W ) ) e. _V -> ( `' ( x e. ( Base ` W ) |-> ( x ( .i ` W ) y ) ) " { ( 0g ` ( Scalar ` W ) ) } ) = { x e. ( Base ` W ) | ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) } ) |
| 32 | 29 31 | ax-mp | |- ( `' ( x e. ( Base ` W ) |-> ( x ( .i ` W ) y ) ) " { ( 0g ` ( Scalar ` W ) ) } ) = { x e. ( Base ` W ) | ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) } |
| 33 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 34 | simpll | |- ( ( ( W e. CPreHil /\ S e. C ) /\ y e. ( Base ` W ) ) -> W e. CPreHil ) |
|
| 35 | 21 | adantr | |- ( ( ( W e. CPreHil /\ S e. C ) /\ y e. ( Base ` W ) ) -> J e. ( TopOn ` ( Base ` W ) ) ) |
| 36 | 35 | cnmptid | |- ( ( ( W e. CPreHil /\ S e. C ) /\ y e. ( Base ` W ) ) -> ( x e. ( Base ` W ) |-> x ) e. ( J Cn J ) ) |
| 37 | simpr | |- ( ( ( W e. CPreHil /\ S e. C ) /\ y e. ( Base ` W ) ) -> y e. ( Base ` W ) ) |
|
| 38 | 35 35 37 | cnmptc | |- ( ( ( W e. CPreHil /\ S e. C ) /\ y e. ( Base ` W ) ) -> ( x e. ( Base ` W ) |-> y ) e. ( J Cn J ) ) |
| 39 | 2 33 8 34 35 36 38 | cnmpt1ip | |- ( ( ( W e. CPreHil /\ S e. C ) /\ y e. ( Base ` W ) ) -> ( x e. ( Base ` W ) |-> ( x ( .i ` W ) y ) ) e. ( J Cn ( TopOpen ` CCfld ) ) ) |
| 40 | 33 | cnfldhaus | |- ( TopOpen ` CCfld ) e. Haus |
| 41 | cphclm | |- ( W e. CPreHil -> W e. CMod ) |
|
| 42 | 9 | clm0 | |- ( W e. CMod -> 0 = ( 0g ` ( Scalar ` W ) ) ) |
| 43 | 41 42 | syl | |- ( W e. CPreHil -> 0 = ( 0g ` ( Scalar ` W ) ) ) |
| 44 | 43 | ad2antrr | |- ( ( ( W e. CPreHil /\ S e. C ) /\ y e. ( Base ` W ) ) -> 0 = ( 0g ` ( Scalar ` W ) ) ) |
| 45 | 0cn | |- 0 e. CC |
|
| 46 | 44 45 | eqeltrrdi | |- ( ( ( W e. CPreHil /\ S e. C ) /\ y e. ( Base ` W ) ) -> ( 0g ` ( Scalar ` W ) ) e. CC ) |
| 47 | unicntop | |- CC = U. ( TopOpen ` CCfld ) |
|
| 48 | 47 | sncld | |- ( ( ( TopOpen ` CCfld ) e. Haus /\ ( 0g ` ( Scalar ` W ) ) e. CC ) -> { ( 0g ` ( Scalar ` W ) ) } e. ( Clsd ` ( TopOpen ` CCfld ) ) ) |
| 49 | 40 46 48 | sylancr | |- ( ( ( W e. CPreHil /\ S e. C ) /\ y e. ( Base ` W ) ) -> { ( 0g ` ( Scalar ` W ) ) } e. ( Clsd ` ( TopOpen ` CCfld ) ) ) |
| 50 | cnclima | |- ( ( ( x e. ( Base ` W ) |-> ( x ( .i ` W ) y ) ) e. ( J Cn ( TopOpen ` CCfld ) ) /\ { ( 0g ` ( Scalar ` W ) ) } e. ( Clsd ` ( TopOpen ` CCfld ) ) ) -> ( `' ( x e. ( Base ` W ) |-> ( x ( .i ` W ) y ) ) " { ( 0g ` ( Scalar ` W ) ) } ) e. ( Clsd ` J ) ) |
|
| 51 | 39 49 50 | syl2anc | |- ( ( ( W e. CPreHil /\ S e. C ) /\ y e. ( Base ` W ) ) -> ( `' ( x e. ( Base ` W ) |-> ( x ( .i ` W ) y ) ) " { ( 0g ` ( Scalar ` W ) ) } ) e. ( Clsd ` J ) ) |
| 52 | 32 51 | eqeltrrid | |- ( ( ( W e. CPreHil /\ S e. C ) /\ y e. ( Base ` W ) ) -> { x e. ( Base ` W ) | ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) } e. ( Clsd ` J ) ) |
| 53 | 28 52 | sylan2 | |- ( ( ( W e. CPreHil /\ S e. C ) /\ y e. ( ( ocv ` W ) ` S ) ) -> { x e. ( Base ` W ) | ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) } e. ( Clsd ` J ) ) |
| 54 | 53 | ralrimiva | |- ( ( W e. CPreHil /\ S e. C ) -> A. y e. ( ( ocv ` W ) ` S ) { x e. ( Base ` W ) | ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) } e. ( Clsd ` J ) ) |
| 55 | eqid | |- U. J = U. J |
|
| 56 | 55 | riincld | |- ( ( J e. Top /\ A. y e. ( ( ocv ` W ) ` S ) { x e. ( Base ` W ) | ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) } e. ( Clsd ` J ) ) -> ( U. J i^i |^|_ y e. ( ( ocv ` W ) ` S ) { x e. ( Base ` W ) | ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) } ) e. ( Clsd ` J ) ) |
| 57 | 27 54 56 | syl2anc | |- ( ( W e. CPreHil /\ S e. C ) -> ( U. J i^i |^|_ y e. ( ( ocv ` W ) ` S ) { x e. ( Base ` W ) | ( x ( .i ` W ) y ) = ( 0g ` ( Scalar ` W ) ) } ) e. ( Clsd ` J ) ) |
| 58 | 25 57 | eqeltrd | |- ( ( W e. CPreHil /\ S e. C ) -> S e. ( Clsd ` J ) ) |