This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An indexed relative intersection of closed sets is closed. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | riincld | ⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | riin0 | ⊢ ( 𝐴 = ∅ → ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) = 𝑋 ) | |
| 3 | 2 | adantl | ⊢ ( ( ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝐴 = ∅ ) → ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) = 𝑋 ) |
| 4 | 1 | topcld | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) |
| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝐴 = ∅ ) → 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) |
| 6 | 3 5 | eqeltrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝐴 = ∅ ) → ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 7 | 4 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝐴 ≠ ∅ ) → 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) |
| 8 | simpr | ⊢ ( ( ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) | |
| 9 | simplr | ⊢ ( ( ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝐴 ≠ ∅ ) → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 10 | iincld | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 11 | 8 9 10 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝐴 ≠ ∅ ) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) |
| 12 | incld | ⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ∩ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) ∈ ( Clsd ‘ 𝐽 ) ) | |
| 13 | 7 11 12 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝐴 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 14 | 6 13 | pm2.61dane | ⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵 ) ∈ ( Clsd ‘ 𝐽 ) ) |