This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complete subspace of a normed vector space with a complete scalar field is a Banach space. Remark: In contrast to ClSubSp , a complete subspace is defined by "a linear subspace in which all Cauchy sequences converge to a point in the subspace". This is closer to the original, but deprecated definition CH ( df-ch ) of closed subspaces of a Hilbert space. It may be superseded by cmslssbn . (Contributed by NM, 10-Apr-2008) (Revised by AV, 6-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cssbn.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| cssbn.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| cssbn.d | ⊢ 𝐷 = ( ( dist ‘ 𝑊 ) ↾ ( 𝑈 × 𝑈 ) ) | ||
| Assertion | cssbn | ⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑋 ∈ Ban ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cssbn.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| 2 | cssbn.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | cssbn.d | ⊢ 𝐷 = ( ( dist ‘ 𝑊 ) ↾ ( 𝑈 × 𝑈 ) ) | |
| 4 | simpl1 | ⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑊 ∈ NrmVec ) | |
| 5 | simpl2 | ⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → ( Scalar ‘ 𝑊 ) ∈ CMetSp ) | |
| 6 | nvcnlm | ⊢ ( 𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod ) | |
| 7 | nlmngp | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp ) | |
| 8 | 6 7 | syl | ⊢ ( 𝑊 ∈ NrmVec → 𝑊 ∈ NrmGrp ) |
| 9 | nvclmod | ⊢ ( 𝑊 ∈ NrmVec → 𝑊 ∈ LMod ) | |
| 10 | 2 | lsssubg | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 11 | 9 10 | sylan | ⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 12 | 1 | subgngp | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → 𝑋 ∈ NrmGrp ) |
| 13 | 8 11 12 | syl2an2r | ⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmGrp ) |
| 14 | 13 | 3adant2 | ⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmGrp ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑋 ∈ NrmGrp ) |
| 16 | ngpms | ⊢ ( 𝑋 ∈ NrmGrp → 𝑋 ∈ MetSp ) | |
| 17 | 15 16 | syl | ⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑋 ∈ MetSp ) |
| 18 | eqid | ⊢ ( dist ‘ 𝑊 ) = ( dist ‘ 𝑊 ) | |
| 19 | 1 18 | ressds | ⊢ ( 𝑈 ∈ 𝑆 → ( dist ‘ 𝑊 ) = ( dist ‘ 𝑋 ) ) |
| 20 | 19 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → ( dist ‘ 𝑊 ) = ( dist ‘ 𝑋 ) ) |
| 21 | 11 | 3adant2 | ⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 22 | 1 | subgbas | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
| 23 | 21 22 | syl | ⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
| 24 | 23 | sqxpeqd | ⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → ( 𝑈 × 𝑈 ) = ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) |
| 25 | 20 24 | reseq12d | ⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → ( ( dist ‘ 𝑊 ) ↾ ( 𝑈 × 𝑈 ) ) = ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ) |
| 26 | 3 25 | eqtrid | ⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → 𝐷 = ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ) |
| 27 | 26 | eqcomd | ⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) = 𝐷 ) |
| 28 | 27 | adantr | ⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) = 𝐷 ) |
| 29 | eqid | ⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) | |
| 30 | eqid | ⊢ ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) = ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) | |
| 31 | 29 30 | ngpmet | ⊢ ( 𝑋 ∈ NrmGrp → ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑋 ) ) ) |
| 32 | 14 31 | syl | ⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑋 ) ) ) |
| 33 | 26 32 | eqeltrd | ⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → 𝐷 ∈ ( Met ‘ ( Base ‘ 𝑋 ) ) ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝐷 ∈ ( Met ‘ ( Base ‘ 𝑋 ) ) ) |
| 35 | simpr | ⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) | |
| 36 | eqid | ⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) | |
| 37 | 36 | iscmet2 | ⊢ ( 𝐷 ∈ ( CMet ‘ ( Base ‘ 𝑋 ) ) ↔ ( 𝐷 ∈ ( Met ‘ ( Base ‘ 𝑋 ) ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) ) |
| 38 | 34 35 37 | sylanbrc | ⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝐷 ∈ ( CMet ‘ ( Base ‘ 𝑋 ) ) ) |
| 39 | 28 38 | eqeltrd | ⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝑋 ) ) ) |
| 40 | 29 30 | iscms | ⊢ ( 𝑋 ∈ CMetSp ↔ ( 𝑋 ∈ MetSp ∧ ( ( dist ‘ 𝑋 ) ↾ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ) ∈ ( CMet ‘ ( Base ‘ 𝑋 ) ) ) ) |
| 41 | 17 39 40 | sylanbrc | ⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑋 ∈ CMetSp ) |
| 42 | simpl3 | ⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑈 ∈ 𝑆 ) | |
| 43 | 1 2 | cmslssbn | ⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ) ∧ ( 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ) → 𝑋 ∈ Ban ) |
| 44 | 4 5 41 42 43 | syl22anc | ⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑋 ∈ Ban ) |