This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complete subspace of a normed vector space with a complete scalar field is a Banach space. Remark: In contrast to ClSubSp , a complete subspace is defined by "a linear subspace in which all Cauchy sequences converge to a point in the subspace". This is closer to the original, but deprecated definition CH ( df-ch ) of closed subspaces of a Hilbert space. It may be superseded by cmslssbn . (Contributed by NM, 10-Apr-2008) (Revised by AV, 6-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cssbn.x | |- X = ( W |`s U ) |
|
| cssbn.s | |- S = ( LSubSp ` W ) |
||
| cssbn.d | |- D = ( ( dist ` W ) |` ( U X. U ) ) |
||
| Assertion | cssbn | |- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> X e. Ban ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cssbn.x | |- X = ( W |`s U ) |
|
| 2 | cssbn.s | |- S = ( LSubSp ` W ) |
|
| 3 | cssbn.d | |- D = ( ( dist ` W ) |` ( U X. U ) ) |
|
| 4 | simpl1 | |- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> W e. NrmVec ) |
|
| 5 | simpl2 | |- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> ( Scalar ` W ) e. CMetSp ) |
|
| 6 | nvcnlm | |- ( W e. NrmVec -> W e. NrmMod ) |
|
| 7 | nlmngp | |- ( W e. NrmMod -> W e. NrmGrp ) |
|
| 8 | 6 7 | syl | |- ( W e. NrmVec -> W e. NrmGrp ) |
| 9 | nvclmod | |- ( W e. NrmVec -> W e. LMod ) |
|
| 10 | 2 | lsssubg | |- ( ( W e. LMod /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
| 11 | 9 10 | sylan | |- ( ( W e. NrmVec /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
| 12 | 1 | subgngp | |- ( ( W e. NrmGrp /\ U e. ( SubGrp ` W ) ) -> X e. NrmGrp ) |
| 13 | 8 11 12 | syl2an2r | |- ( ( W e. NrmVec /\ U e. S ) -> X e. NrmGrp ) |
| 14 | 13 | 3adant2 | |- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> X e. NrmGrp ) |
| 15 | 14 | adantr | |- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> X e. NrmGrp ) |
| 16 | ngpms | |- ( X e. NrmGrp -> X e. MetSp ) |
|
| 17 | 15 16 | syl | |- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> X e. MetSp ) |
| 18 | eqid | |- ( dist ` W ) = ( dist ` W ) |
|
| 19 | 1 18 | ressds | |- ( U e. S -> ( dist ` W ) = ( dist ` X ) ) |
| 20 | 19 | 3ad2ant3 | |- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> ( dist ` W ) = ( dist ` X ) ) |
| 21 | 11 | 3adant2 | |- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
| 22 | 1 | subgbas | |- ( U e. ( SubGrp ` W ) -> U = ( Base ` X ) ) |
| 23 | 21 22 | syl | |- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> U = ( Base ` X ) ) |
| 24 | 23 | sqxpeqd | |- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> ( U X. U ) = ( ( Base ` X ) X. ( Base ` X ) ) ) |
| 25 | 20 24 | reseq12d | |- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> ( ( dist ` W ) |` ( U X. U ) ) = ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) ) |
| 26 | 3 25 | eqtrid | |- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> D = ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) ) |
| 27 | 26 | eqcomd | |- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) = D ) |
| 28 | 27 | adantr | |- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) = D ) |
| 29 | eqid | |- ( Base ` X ) = ( Base ` X ) |
|
| 30 | eqid | |- ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) = ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) |
|
| 31 | 29 30 | ngpmet | |- ( X e. NrmGrp -> ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) e. ( Met ` ( Base ` X ) ) ) |
| 32 | 14 31 | syl | |- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) e. ( Met ` ( Base ` X ) ) ) |
| 33 | 26 32 | eqeltrd | |- ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) -> D e. ( Met ` ( Base ` X ) ) ) |
| 34 | 33 | adantr | |- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> D e. ( Met ` ( Base ` X ) ) ) |
| 35 | simpr | |- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) |
|
| 36 | eqid | |- ( MetOpen ` D ) = ( MetOpen ` D ) |
|
| 37 | 36 | iscmet2 | |- ( D e. ( CMet ` ( Base ` X ) ) <-> ( D e. ( Met ` ( Base ` X ) ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) ) |
| 38 | 34 35 37 | sylanbrc | |- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> D e. ( CMet ` ( Base ` X ) ) ) |
| 39 | 28 38 | eqeltrd | |- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) e. ( CMet ` ( Base ` X ) ) ) |
| 40 | 29 30 | iscms | |- ( X e. CMetSp <-> ( X e. MetSp /\ ( ( dist ` X ) |` ( ( Base ` X ) X. ( Base ` X ) ) ) e. ( CMet ` ( Base ` X ) ) ) ) |
| 41 | 17 39 40 | sylanbrc | |- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> X e. CMetSp ) |
| 42 | simpl3 | |- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> U e. S ) |
|
| 43 | 1 2 | cmslssbn | |- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp ) /\ ( X e. CMetSp /\ U e. S ) ) -> X e. Ban ) |
| 44 | 4 5 41 42 43 | syl22anc | |- ( ( ( W e. NrmVec /\ ( Scalar ` W ) e. CMetSp /\ U e. S ) /\ ( Cau ` D ) C_ dom ( ~~>t ` ( MetOpen ` D ) ) ) -> X e. Ban ) |