This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complete linear subspace of a normed vector space is a Banach space. We furthermore have to assume that the field of scalars is complete since this is a requirement in the current definition of Banach spaces df-bn . (Contributed by AV, 8-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmslssbn.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| cmslssbn.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | cmslssbn | ⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ) ∧ ( 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ) → 𝑋 ∈ Ban ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmslssbn.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| 2 | cmslssbn.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | 1 2 | lssnvc | ⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmVec ) |
| 4 | 3 | ad2ant2rl | ⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ) ∧ ( 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ) → 𝑋 ∈ NrmVec ) |
| 5 | simprl | ⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ) ∧ ( 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ) → 𝑋 ∈ CMetSp ) | |
| 6 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 7 | 1 6 | resssca | ⊢ ( 𝑈 ∈ 𝑆 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 8 | 7 | ad2antll | ⊢ ( ( 𝑊 ∈ NrmVec ∧ ( 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 9 | 8 | eleq1d | ⊢ ( ( 𝑊 ∈ NrmVec ∧ ( 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ) → ( ( Scalar ‘ 𝑊 ) ∈ CMetSp ↔ ( Scalar ‘ 𝑋 ) ∈ CMetSp ) ) |
| 10 | 9 | biimpd | ⊢ ( ( 𝑊 ∈ NrmVec ∧ ( 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ) → ( ( Scalar ‘ 𝑊 ) ∈ CMetSp → ( Scalar ‘ 𝑋 ) ∈ CMetSp ) ) |
| 11 | 10 | impancom | ⊢ ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ) → ( ( 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑋 ) ∈ CMetSp ) ) |
| 12 | 11 | imp | ⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ) ∧ ( 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ) → ( Scalar ‘ 𝑋 ) ∈ CMetSp ) |
| 13 | eqid | ⊢ ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑋 ) | |
| 14 | 13 | isbn | ⊢ ( 𝑋 ∈ Ban ↔ ( 𝑋 ∈ NrmVec ∧ 𝑋 ∈ CMetSp ∧ ( Scalar ‘ 𝑋 ) ∈ CMetSp ) ) |
| 15 | 4 5 12 14 | syl3anbrc | ⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ) ∧ ( 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ) → 𝑋 ∈ Ban ) |