This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complete subspace of a complex pre-Hilbert space is a complex Hilbert space. Remarks: (a) In contrast to ClSubSp , a complete subspace is defined by "a linear subspace in which all Cauchy sequences converge to a point in the subspace". This is closer to the original, but deprecated definition CH ( df-ch ) of closed subspaces of a Hilbert space. (b) This theorem does not hold for arbitrary subcomplex (pre-)Hilbert spaces, because the scalar field as restriction of the field of the complex numbers need not be closed. (Contributed by NM, 10-Apr-2008) (Revised by AV, 6-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cssbn.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| cssbn.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| cssbn.d | ⊢ 𝐷 = ( ( dist ‘ 𝑊 ) ↾ ( 𝑈 × 𝑈 ) ) | ||
| csschl.c | ⊢ ( Scalar ‘ 𝑊 ) = ℂfld | ||
| Assertion | csschl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → ( 𝑋 ∈ ℂHil ∧ ( Scalar ‘ 𝑋 ) = ℂfld ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cssbn.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| 2 | cssbn.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | cssbn.d | ⊢ 𝐷 = ( ( dist ‘ 𝑊 ) ↾ ( 𝑈 × 𝑈 ) ) | |
| 4 | csschl.c | ⊢ ( Scalar ‘ 𝑊 ) = ℂfld | |
| 5 | cphnvc | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec ) | |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑊 ∈ NrmVec ) |
| 7 | cncms | ⊢ ℂfld ∈ CMetSp | |
| 8 | eleq1 | ⊢ ( ( Scalar ‘ 𝑊 ) = ℂfld → ( ( Scalar ‘ 𝑊 ) ∈ CMetSp ↔ ℂfld ∈ CMetSp ) ) | |
| 9 | 7 8 | mpbiri | ⊢ ( ( Scalar ‘ 𝑊 ) = ℂfld → ( Scalar ‘ 𝑊 ) ∈ CMetSp ) |
| 10 | 4 9 | mp1i | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → ( Scalar ‘ 𝑊 ) ∈ CMetSp ) |
| 11 | simp2 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑈 ∈ 𝑆 ) | |
| 12 | simp3 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) | |
| 13 | 1 2 3 | cssbn | ⊢ ( ( ( 𝑊 ∈ NrmVec ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ∧ 𝑈 ∈ 𝑆 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑋 ∈ Ban ) |
| 14 | 6 10 11 12 13 | syl31anc | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑋 ∈ Ban ) |
| 15 | 1 2 | cphssphl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ Ban ) → 𝑋 ∈ ℂHil ) |
| 16 | 14 15 | syld3an3 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → 𝑋 ∈ ℂHil ) |
| 17 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 18 | 1 17 | resssca | ⊢ ( 𝑈 ∈ 𝑆 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 19 | 18 4 | eqtr3di | ⊢ ( 𝑈 ∈ 𝑆 → ( Scalar ‘ 𝑋 ) = ℂfld ) |
| 20 | 19 | 3ad2ant2 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → ( Scalar ‘ 𝑋 ) = ℂfld ) |
| 21 | 16 20 | jca | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) → ( 𝑋 ∈ ℂHil ∧ ( Scalar ‘ 𝑋 ) = ℂfld ) ) |