This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complete metric space is a metric space with a complete metric. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscms.1 | ⊢ 𝑋 = ( Base ‘ 𝑀 ) | |
| iscms.2 | ⊢ 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) | ||
| Assertion | iscms | ⊢ ( 𝑀 ∈ CMetSp ↔ ( 𝑀 ∈ MetSp ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscms.1 | ⊢ 𝑋 = ( Base ‘ 𝑀 ) | |
| 2 | iscms.2 | ⊢ 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) | |
| 3 | fvexd | ⊢ ( 𝑤 = 𝑀 → ( Base ‘ 𝑤 ) ∈ V ) | |
| 4 | fveq2 | ⊢ ( 𝑤 = 𝑀 → ( dist ‘ 𝑤 ) = ( dist ‘ 𝑀 ) ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝑤 = 𝑀 ∧ 𝑏 = ( Base ‘ 𝑤 ) ) → ( dist ‘ 𝑤 ) = ( dist ‘ 𝑀 ) ) |
| 6 | id | ⊢ ( 𝑏 = ( Base ‘ 𝑤 ) → 𝑏 = ( Base ‘ 𝑤 ) ) | |
| 7 | fveq2 | ⊢ ( 𝑤 = 𝑀 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑀 ) ) | |
| 8 | 7 1 | eqtr4di | ⊢ ( 𝑤 = 𝑀 → ( Base ‘ 𝑤 ) = 𝑋 ) |
| 9 | 6 8 | sylan9eqr | ⊢ ( ( 𝑤 = 𝑀 ∧ 𝑏 = ( Base ‘ 𝑤 ) ) → 𝑏 = 𝑋 ) |
| 10 | 9 | sqxpeqd | ⊢ ( ( 𝑤 = 𝑀 ∧ 𝑏 = ( Base ‘ 𝑤 ) ) → ( 𝑏 × 𝑏 ) = ( 𝑋 × 𝑋 ) ) |
| 11 | 5 10 | reseq12d | ⊢ ( ( 𝑤 = 𝑀 ∧ 𝑏 = ( Base ‘ 𝑤 ) ) → ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) |
| 12 | 11 2 | eqtr4di | ⊢ ( ( 𝑤 = 𝑀 ∧ 𝑏 = ( Base ‘ 𝑤 ) ) → ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) = 𝐷 ) |
| 13 | 9 | fveq2d | ⊢ ( ( 𝑤 = 𝑀 ∧ 𝑏 = ( Base ‘ 𝑤 ) ) → ( CMet ‘ 𝑏 ) = ( CMet ‘ 𝑋 ) ) |
| 14 | 12 13 | eleq12d | ⊢ ( ( 𝑤 = 𝑀 ∧ 𝑏 = ( Base ‘ 𝑤 ) ) → ( ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) ∈ ( CMet ‘ 𝑏 ) ↔ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ) |
| 15 | 3 14 | sbcied | ⊢ ( 𝑤 = 𝑀 → ( [ ( Base ‘ 𝑤 ) / 𝑏 ] ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) ∈ ( CMet ‘ 𝑏 ) ↔ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ) |
| 16 | df-cms | ⊢ CMetSp = { 𝑤 ∈ MetSp ∣ [ ( Base ‘ 𝑤 ) / 𝑏 ] ( ( dist ‘ 𝑤 ) ↾ ( 𝑏 × 𝑏 ) ) ∈ ( CMet ‘ 𝑏 ) } | |
| 17 | 15 16 | elrab2 | ⊢ ( 𝑀 ∈ CMetSp ↔ ( 𝑀 ∈ MetSp ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ) |