This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a C^n function is C^n . (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cpnres | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) | |
| 2 | ssid | ⊢ ℂ ⊆ ℂ | |
| 3 | elfvdm | ⊢ ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) → 𝑁 ∈ dom ( 𝓑C𝑛 ‘ ℂ ) ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → 𝑁 ∈ dom ( 𝓑C𝑛 ‘ ℂ ) ) |
| 5 | fncpn | ⊢ ( ℂ ⊆ ℂ → ( 𝓑C𝑛 ‘ ℂ ) Fn ℕ0 ) | |
| 6 | 2 5 | ax-mp | ⊢ ( 𝓑C𝑛 ‘ ℂ ) Fn ℕ0 |
| 7 | fndm | ⊢ ( ( 𝓑C𝑛 ‘ ℂ ) Fn ℕ0 → dom ( 𝓑C𝑛 ‘ ℂ ) = ℕ0 ) | |
| 8 | 6 7 | mp1i | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → dom ( 𝓑C𝑛 ‘ ℂ ) = ℕ0 ) |
| 9 | 4 8 | eleqtrd | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → 𝑁 ∈ ℕ0 ) |
| 10 | elcpn | ⊢ ( ( ℂ ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) ) ) | |
| 11 | 2 9 10 | sylancr | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) ) ) |
| 12 | 1 11 | mpbid | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) ) |
| 13 | 12 | simpld | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → 𝐹 ∈ ( ℂ ↑pm ℂ ) ) |
| 14 | pmresg | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( 𝐹 ↾ 𝑆 ) ∈ ( ℂ ↑pm 𝑆 ) ) | |
| 15 | 13 14 | syldan | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( 𝐹 ↾ 𝑆 ) ∈ ( ℂ ↑pm 𝑆 ) ) |
| 16 | simpl | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → 𝑆 ∈ { ℝ , ℂ } ) | |
| 17 | 12 | simprd | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) |
| 18 | cncff | ⊢ ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( dom 𝐹 –cn→ ℂ ) → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) : dom 𝐹 ⟶ ℂ ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) : dom 𝐹 ⟶ ℂ ) |
| 20 | 19 | fdmd | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 ) |
| 21 | dvnres | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑁 ∈ ℕ0 ) ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 ) → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) | |
| 22 | 16 13 9 20 21 | syl31anc | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) |
| 23 | resres | ⊢ ( ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ↾ dom 𝐹 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ ( 𝑆 ∩ dom 𝐹 ) ) | |
| 24 | rescom | ⊢ ( ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ↾ dom 𝐹 ) = ( ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ dom 𝐹 ) ↾ 𝑆 ) | |
| 25 | 23 24 | eqtr3i | ⊢ ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ ( 𝑆 ∩ dom 𝐹 ) ) = ( ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ dom 𝐹 ) ↾ 𝑆 ) |
| 26 | ffn | ⊢ ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) : dom 𝐹 ⟶ ℂ → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) Fn dom 𝐹 ) | |
| 27 | fnresdm | ⊢ ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) Fn dom 𝐹 → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ dom 𝐹 ) = ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ) | |
| 28 | 19 26 27 | 3syl | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ dom 𝐹 ) = ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ) |
| 29 | 28 | reseq1d | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ dom 𝐹 ) ↾ 𝑆 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) |
| 30 | 25 29 | eqtrid | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ ( 𝑆 ∩ dom 𝐹 ) ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) |
| 31 | inss2 | ⊢ ( 𝑆 ∩ dom 𝐹 ) ⊆ dom 𝐹 | |
| 32 | rescncf | ⊢ ( ( 𝑆 ∩ dom 𝐹 ) ⊆ dom 𝐹 → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( dom 𝐹 –cn→ ℂ ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ ( 𝑆 ∩ dom 𝐹 ) ) ∈ ( ( 𝑆 ∩ dom 𝐹 ) –cn→ ℂ ) ) ) | |
| 33 | 31 17 32 | mpsyl | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ ( 𝑆 ∩ dom 𝐹 ) ) ∈ ( ( 𝑆 ∩ dom 𝐹 ) –cn→ ℂ ) ) |
| 34 | 30 33 | eqeltrrd | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ∈ ( ( 𝑆 ∩ dom 𝐹 ) –cn→ ℂ ) ) |
| 35 | dmres | ⊢ dom ( 𝐹 ↾ 𝑆 ) = ( 𝑆 ∩ dom 𝐹 ) | |
| 36 | 35 | oveq1i | ⊢ ( dom ( 𝐹 ↾ 𝑆 ) –cn→ ℂ ) = ( ( 𝑆 ∩ dom 𝐹 ) –cn→ ℂ ) |
| 37 | 34 36 | eleqtrrdi | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ∈ ( dom ( 𝐹 ↾ 𝑆 ) –cn→ ℂ ) ) |
| 38 | 22 37 | eqeltrd | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) ∈ ( dom ( 𝐹 ↾ 𝑆 ) –cn→ ℂ ) ) |
| 39 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 40 | elcpn | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ↔ ( ( 𝐹 ↾ 𝑆 ) ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) ∈ ( dom ( 𝐹 ↾ 𝑆 ) –cn→ ℂ ) ) ) ) | |
| 41 | 39 9 40 | syl2an2r | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ↔ ( ( 𝐹 ↾ 𝑆 ) ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) ∈ ( dom ( 𝐹 ↾ 𝑆 ) –cn→ ℂ ) ) ) ) |
| 42 | 15 38 41 | mpbir2and | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 𝑁 ) ) → ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ) |