This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a C^n function is C^n . (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cpnres | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( F |` S ) e. ( ( C^n ` S ) ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> F e. ( ( C^n ` CC ) ` N ) ) |
|
| 2 | ssid | |- CC C_ CC |
|
| 3 | elfvdm | |- ( F e. ( ( C^n ` CC ) ` N ) -> N e. dom ( C^n ` CC ) ) |
|
| 4 | 3 | adantl | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> N e. dom ( C^n ` CC ) ) |
| 5 | fncpn | |- ( CC C_ CC -> ( C^n ` CC ) Fn NN0 ) |
|
| 6 | 2 5 | ax-mp | |- ( C^n ` CC ) Fn NN0 |
| 7 | fndm | |- ( ( C^n ` CC ) Fn NN0 -> dom ( C^n ` CC ) = NN0 ) |
|
| 8 | 6 7 | mp1i | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> dom ( C^n ` CC ) = NN0 ) |
| 9 | 4 8 | eleqtrd | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> N e. NN0 ) |
| 10 | elcpn | |- ( ( CC C_ CC /\ N e. NN0 ) -> ( F e. ( ( C^n ` CC ) ` N ) <-> ( F e. ( CC ^pm CC ) /\ ( ( CC Dn F ) ` N ) e. ( dom F -cn-> CC ) ) ) ) |
|
| 11 | 2 9 10 | sylancr | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( F e. ( ( C^n ` CC ) ` N ) <-> ( F e. ( CC ^pm CC ) /\ ( ( CC Dn F ) ` N ) e. ( dom F -cn-> CC ) ) ) ) |
| 12 | 1 11 | mpbid | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( F e. ( CC ^pm CC ) /\ ( ( CC Dn F ) ` N ) e. ( dom F -cn-> CC ) ) ) |
| 13 | 12 | simpld | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> F e. ( CC ^pm CC ) ) |
| 14 | pmresg | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) -> ( F |` S ) e. ( CC ^pm S ) ) |
|
| 15 | 13 14 | syldan | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( F |` S ) e. ( CC ^pm S ) ) |
| 16 | simpl | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> S e. { RR , CC } ) |
|
| 17 | 12 | simprd | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( CC Dn F ) ` N ) e. ( dom F -cn-> CC ) ) |
| 18 | cncff | |- ( ( ( CC Dn F ) ` N ) e. ( dom F -cn-> CC ) -> ( ( CC Dn F ) ` N ) : dom F --> CC ) |
|
| 19 | 17 18 | syl | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( CC Dn F ) ` N ) : dom F --> CC ) |
| 20 | 19 | fdmd | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> dom ( ( CC Dn F ) ` N ) = dom F ) |
| 21 | dvnres | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) /\ N e. NN0 ) /\ dom ( ( CC Dn F ) ` N ) = dom F ) -> ( ( S Dn ( F |` S ) ) ` N ) = ( ( ( CC Dn F ) ` N ) |` S ) ) |
|
| 22 | 16 13 9 20 21 | syl31anc | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( S Dn ( F |` S ) ) ` N ) = ( ( ( CC Dn F ) ` N ) |` S ) ) |
| 23 | resres | |- ( ( ( ( CC Dn F ) ` N ) |` S ) |` dom F ) = ( ( ( CC Dn F ) ` N ) |` ( S i^i dom F ) ) |
|
| 24 | rescom | |- ( ( ( ( CC Dn F ) ` N ) |` S ) |` dom F ) = ( ( ( ( CC Dn F ) ` N ) |` dom F ) |` S ) |
|
| 25 | 23 24 | eqtr3i | |- ( ( ( CC Dn F ) ` N ) |` ( S i^i dom F ) ) = ( ( ( ( CC Dn F ) ` N ) |` dom F ) |` S ) |
| 26 | ffn | |- ( ( ( CC Dn F ) ` N ) : dom F --> CC -> ( ( CC Dn F ) ` N ) Fn dom F ) |
|
| 27 | fnresdm | |- ( ( ( CC Dn F ) ` N ) Fn dom F -> ( ( ( CC Dn F ) ` N ) |` dom F ) = ( ( CC Dn F ) ` N ) ) |
|
| 28 | 19 26 27 | 3syl | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( ( CC Dn F ) ` N ) |` dom F ) = ( ( CC Dn F ) ` N ) ) |
| 29 | 28 | reseq1d | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( ( ( CC Dn F ) ` N ) |` dom F ) |` S ) = ( ( ( CC Dn F ) ` N ) |` S ) ) |
| 30 | 25 29 | eqtrid | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( ( CC Dn F ) ` N ) |` ( S i^i dom F ) ) = ( ( ( CC Dn F ) ` N ) |` S ) ) |
| 31 | inss2 | |- ( S i^i dom F ) C_ dom F |
|
| 32 | rescncf | |- ( ( S i^i dom F ) C_ dom F -> ( ( ( CC Dn F ) ` N ) e. ( dom F -cn-> CC ) -> ( ( ( CC Dn F ) ` N ) |` ( S i^i dom F ) ) e. ( ( S i^i dom F ) -cn-> CC ) ) ) |
|
| 33 | 31 17 32 | mpsyl | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( ( CC Dn F ) ` N ) |` ( S i^i dom F ) ) e. ( ( S i^i dom F ) -cn-> CC ) ) |
| 34 | 30 33 | eqeltrrd | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( ( CC Dn F ) ` N ) |` S ) e. ( ( S i^i dom F ) -cn-> CC ) ) |
| 35 | dmres | |- dom ( F |` S ) = ( S i^i dom F ) |
|
| 36 | 35 | oveq1i | |- ( dom ( F |` S ) -cn-> CC ) = ( ( S i^i dom F ) -cn-> CC ) |
| 37 | 34 36 | eleqtrrdi | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( ( CC Dn F ) ` N ) |` S ) e. ( dom ( F |` S ) -cn-> CC ) ) |
| 38 | 22 37 | eqeltrd | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( S Dn ( F |` S ) ) ` N ) e. ( dom ( F |` S ) -cn-> CC ) ) |
| 39 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
| 40 | elcpn | |- ( ( S C_ CC /\ N e. NN0 ) -> ( ( F |` S ) e. ( ( C^n ` S ) ` N ) <-> ( ( F |` S ) e. ( CC ^pm S ) /\ ( ( S Dn ( F |` S ) ) ` N ) e. ( dom ( F |` S ) -cn-> CC ) ) ) ) |
|
| 41 | 39 9 40 | syl2an2r | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( ( F |` S ) e. ( ( C^n ` S ) ` N ) <-> ( ( F |` S ) e. ( CC ^pm S ) /\ ( ( S Dn ( F |` S ) ) ` N ) e. ( dom ( F |` S ) -cn-> CC ) ) ) ) |
| 42 | 15 38 41 | mpbir2and | |- ( ( S e. { RR , CC } /\ F e. ( ( C^n ` CC ) ` N ) ) -> ( F |` S ) e. ( ( C^n ` S ) ` N ) ) |