This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elcpn | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ↔ ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cpnfval | ⊢ ( 𝑆 ⊆ ℂ → ( 𝓑C𝑛 ‘ 𝑆 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ) | |
| 2 | 1 | fveq1d | ⊢ ( 𝑆 ⊆ ℂ → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) = ( ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ‘ 𝑁 ) ) |
| 3 | fveq2 | ⊢ ( 𝑛 = 𝑁 → ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑁 ) ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝑛 = 𝑁 → ( ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) ↔ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑁 ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) |
| 5 | 4 | rabbidv | ⊢ ( 𝑛 = 𝑁 → { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } = { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑁 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) |
| 6 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) | |
| 7 | ovex | ⊢ ( ℂ ↑pm 𝑆 ) ∈ V | |
| 8 | 7 | rabex | ⊢ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑁 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ∈ V |
| 9 | 5 6 8 | fvmpt | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ‘ 𝑁 ) = { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑁 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) |
| 10 | 2 9 | sylan9eq | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) = { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑁 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) |
| 11 | 10 | eleq2d | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑁 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ) |
| 12 | oveq2 | ⊢ ( 𝑓 = 𝐹 → ( 𝑆 D𝑛 𝑓 ) = ( 𝑆 D𝑛 𝐹 ) ) | |
| 13 | 12 | fveq1d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑁 ) = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
| 14 | dmeq | ⊢ ( 𝑓 = 𝐹 → dom 𝑓 = dom 𝐹 ) | |
| 15 | 14 | oveq1d | ⊢ ( 𝑓 = 𝐹 → ( dom 𝑓 –cn→ ℂ ) = ( dom 𝐹 –cn→ ℂ ) ) |
| 16 | 13 15 | eleq12d | ⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑁 ) ∈ ( dom 𝑓 –cn→ ℂ ) ↔ ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) ) |
| 17 | 16 | elrab | ⊢ ( 𝐹 ∈ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑁 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ↔ ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) ) |
| 18 | 11 17 | bitrdi | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐹 ∈ ( ( 𝓑C𝑛 ‘ 𝑆 ) ‘ 𝑁 ) ↔ ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( dom 𝐹 –cn→ ℂ ) ) ) ) |