This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace of a subcomplex pre-Hilbert space is a subcomplex pre-Hilbert space. (Contributed by NM, 1-Feb-2008) (Revised by AV, 25-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphsscph.x | |- X = ( W |`s U ) |
|
| cphsscph.s | |- S = ( LSubSp ` W ) |
||
| Assertion | cphsscph | |- ( ( W e. CPreHil /\ U e. S ) -> X e. CPreHil ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphsscph.x | |- X = ( W |`s U ) |
|
| 2 | cphsscph.s | |- S = ( LSubSp ` W ) |
|
| 3 | cphphl | |- ( W e. CPreHil -> W e. PreHil ) |
|
| 4 | 1 2 | phlssphl | |- ( ( W e. PreHil /\ U e. S ) -> X e. PreHil ) |
| 5 | 3 4 | sylan | |- ( ( W e. CPreHil /\ U e. S ) -> X e. PreHil ) |
| 6 | cphnlm | |- ( W e. CPreHil -> W e. NrmMod ) |
|
| 7 | 1 2 | lssnlm | |- ( ( W e. NrmMod /\ U e. S ) -> X e. NrmMod ) |
| 8 | 6 7 | sylan | |- ( ( W e. CPreHil /\ U e. S ) -> X e. NrmMod ) |
| 9 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 10 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 11 | 9 10 | cphsca | |- ( W e. CPreHil -> ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) ) |
| 12 | 11 | adantr | |- ( ( W e. CPreHil /\ U e. S ) -> ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) ) |
| 13 | 1 9 | resssca | |- ( U e. S -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 14 | 13 | fveq2d | |- ( U e. S -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` X ) ) ) |
| 15 | 14 | oveq2d | |- ( U e. S -> ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) = ( CCfld |`s ( Base ` ( Scalar ` X ) ) ) ) |
| 16 | 13 15 | eqeq12d | |- ( U e. S -> ( ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) <-> ( Scalar ` X ) = ( CCfld |`s ( Base ` ( Scalar ` X ) ) ) ) ) |
| 17 | 16 | adantl | |- ( ( W e. CPreHil /\ U e. S ) -> ( ( Scalar ` W ) = ( CCfld |`s ( Base ` ( Scalar ` W ) ) ) <-> ( Scalar ` X ) = ( CCfld |`s ( Base ` ( Scalar ` X ) ) ) ) ) |
| 18 | 12 17 | mpbid | |- ( ( W e. CPreHil /\ U e. S ) -> ( Scalar ` X ) = ( CCfld |`s ( Base ` ( Scalar ` X ) ) ) ) |
| 19 | 5 8 18 | 3jca | |- ( ( W e. CPreHil /\ U e. S ) -> ( X e. PreHil /\ X e. NrmMod /\ ( Scalar ` X ) = ( CCfld |`s ( Base ` ( Scalar ` X ) ) ) ) ) |
| 20 | simpl | |- ( ( W e. CPreHil /\ U e. S ) -> W e. CPreHil ) |
|
| 21 | elinel1 | |- ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) -> q e. ( Base ` ( Scalar ` W ) ) ) |
|
| 22 | 21 | adantr | |- ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) -> q e. ( Base ` ( Scalar ` W ) ) ) |
| 23 | elinel2 | |- ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) -> q e. ( 0 [,) +oo ) ) |
|
| 24 | elrege0 | |- ( q e. ( 0 [,) +oo ) <-> ( q e. RR /\ 0 <_ q ) ) |
|
| 25 | 24 | simplbi | |- ( q e. ( 0 [,) +oo ) -> q e. RR ) |
| 26 | 23 25 | syl | |- ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) -> q e. RR ) |
| 27 | 26 | adantr | |- ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) -> q e. RR ) |
| 28 | 24 | simprbi | |- ( q e. ( 0 [,) +oo ) -> 0 <_ q ) |
| 29 | 23 28 | syl | |- ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) -> 0 <_ q ) |
| 30 | 29 | adantr | |- ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) -> 0 <_ q ) |
| 31 | 22 27 30 | 3jca | |- ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) -> ( q e. ( Base ` ( Scalar ` W ) ) /\ q e. RR /\ 0 <_ q ) ) |
| 32 | 9 10 | cphsqrtcl | |- ( ( W e. CPreHil /\ ( q e. ( Base ` ( Scalar ` W ) ) /\ q e. RR /\ 0 <_ q ) ) -> ( sqrt ` q ) e. ( Base ` ( Scalar ` W ) ) ) |
| 33 | 20 31 32 | syl2anr | |- ( ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) /\ ( W e. CPreHil /\ U e. S ) ) -> ( sqrt ` q ) e. ( Base ` ( Scalar ` W ) ) ) |
| 34 | eleq1 | |- ( ( sqrt ` q ) = x -> ( ( sqrt ` q ) e. ( Base ` ( Scalar ` W ) ) <-> x e. ( Base ` ( Scalar ` W ) ) ) ) |
|
| 35 | 34 | adantl | |- ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) -> ( ( sqrt ` q ) e. ( Base ` ( Scalar ` W ) ) <-> x e. ( Base ` ( Scalar ` W ) ) ) ) |
| 36 | 35 | adantr | |- ( ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) /\ ( W e. CPreHil /\ U e. S ) ) -> ( ( sqrt ` q ) e. ( Base ` ( Scalar ` W ) ) <-> x e. ( Base ` ( Scalar ` W ) ) ) ) |
| 37 | 33 36 | mpbid | |- ( ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) /\ ( W e. CPreHil /\ U e. S ) ) -> x e. ( Base ` ( Scalar ` W ) ) ) |
| 38 | 37 | ex | |- ( ( q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) /\ ( sqrt ` q ) = x ) -> ( ( W e. CPreHil /\ U e. S ) -> x e. ( Base ` ( Scalar ` W ) ) ) ) |
| 39 | 38 | rexlimiva | |- ( E. q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ( sqrt ` q ) = x -> ( ( W e. CPreHil /\ U e. S ) -> x e. ( Base ` ( Scalar ` W ) ) ) ) |
| 40 | df-sqrt | |- sqrt = ( x e. CC |-> ( iota_ c e. CC ( ( c ^ 2 ) = x /\ 0 <_ ( Re ` c ) /\ ( _i x. c ) e/ RR+ ) ) ) |
|
| 41 | 40 | funmpt2 | |- Fun sqrt |
| 42 | fvelima | |- ( ( Fun sqrt /\ x e. ( sqrt " ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ) ) -> E. q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ( sqrt ` q ) = x ) |
|
| 43 | 41 42 | mpan | |- ( x e. ( sqrt " ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ) -> E. q e. ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ( sqrt ` q ) = x ) |
| 44 | 39 43 | syl11 | |- ( ( W e. CPreHil /\ U e. S ) -> ( x e. ( sqrt " ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ) -> x e. ( Base ` ( Scalar ` W ) ) ) ) |
| 45 | 44 | ssrdv | |- ( ( W e. CPreHil /\ U e. S ) -> ( sqrt " ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` ( Scalar ` W ) ) ) |
| 46 | 14 | ineq1d | |- ( U e. S -> ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) = ( ( Base ` ( Scalar ` X ) ) i^i ( 0 [,) +oo ) ) ) |
| 47 | 46 | imaeq2d | |- ( U e. S -> ( sqrt " ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ) = ( sqrt " ( ( Base ` ( Scalar ` X ) ) i^i ( 0 [,) +oo ) ) ) ) |
| 48 | 47 14 | sseq12d | |- ( U e. S -> ( ( sqrt " ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` ( Scalar ` W ) ) <-> ( sqrt " ( ( Base ` ( Scalar ` X ) ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` ( Scalar ` X ) ) ) ) |
| 49 | 48 | adantl | |- ( ( W e. CPreHil /\ U e. S ) -> ( ( sqrt " ( ( Base ` ( Scalar ` W ) ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` ( Scalar ` W ) ) <-> ( sqrt " ( ( Base ` ( Scalar ` X ) ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` ( Scalar ` X ) ) ) ) |
| 50 | 45 49 | mpbid | |- ( ( W e. CPreHil /\ U e. S ) -> ( sqrt " ( ( Base ` ( Scalar ` X ) ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` ( Scalar ` X ) ) ) |
| 51 | cphlmod | |- ( W e. CPreHil -> W e. LMod ) |
|
| 52 | 2 | lsssubg | |- ( ( W e. LMod /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
| 53 | 51 52 | sylan | |- ( ( W e. CPreHil /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
| 54 | eqid | |- ( norm ` W ) = ( norm ` W ) |
|
| 55 | eqid | |- ( norm ` X ) = ( norm ` X ) |
|
| 56 | 1 54 55 | subgnm | |- ( U e. ( SubGrp ` W ) -> ( norm ` X ) = ( ( norm ` W ) |` U ) ) |
| 57 | 53 56 | syl | |- ( ( W e. CPreHil /\ U e. S ) -> ( norm ` X ) = ( ( norm ` W ) |` U ) ) |
| 58 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 59 | eqid | |- ( .i ` W ) = ( .i ` W ) |
|
| 60 | 58 59 54 | cphnmfval | |- ( W e. CPreHil -> ( norm ` W ) = ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` W ) b ) ) ) ) |
| 61 | 60 | adantr | |- ( ( W e. CPreHil /\ U e. S ) -> ( norm ` W ) = ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` W ) b ) ) ) ) |
| 62 | 1 59 | ressip | |- ( U e. S -> ( .i ` W ) = ( .i ` X ) ) |
| 63 | 62 | adantl | |- ( ( W e. CPreHil /\ U e. S ) -> ( .i ` W ) = ( .i ` X ) ) |
| 64 | 63 | oveqd | |- ( ( W e. CPreHil /\ U e. S ) -> ( b ( .i ` W ) b ) = ( b ( .i ` X ) b ) ) |
| 65 | 64 | fveq2d | |- ( ( W e. CPreHil /\ U e. S ) -> ( sqrt ` ( b ( .i ` W ) b ) ) = ( sqrt ` ( b ( .i ` X ) b ) ) ) |
| 66 | 65 | mpteq2dv | |- ( ( W e. CPreHil /\ U e. S ) -> ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` W ) b ) ) ) = ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) ) |
| 67 | 61 66 | eqtrd | |- ( ( W e. CPreHil /\ U e. S ) -> ( norm ` W ) = ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) ) |
| 68 | 58 2 | lssss | |- ( U e. S -> U C_ ( Base ` W ) ) |
| 69 | 68 | adantl | |- ( ( W e. CPreHil /\ U e. S ) -> U C_ ( Base ` W ) ) |
| 70 | dfss | |- ( U C_ ( Base ` W ) <-> U = ( U i^i ( Base ` W ) ) ) |
|
| 71 | 69 70 | sylib | |- ( ( W e. CPreHil /\ U e. S ) -> U = ( U i^i ( Base ` W ) ) ) |
| 72 | 67 71 | reseq12d | |- ( ( W e. CPreHil /\ U e. S ) -> ( ( norm ` W ) |` U ) = ( ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) |` ( U i^i ( Base ` W ) ) ) ) |
| 73 | 1 58 | ressbas | |- ( U e. S -> ( U i^i ( Base ` W ) ) = ( Base ` X ) ) |
| 74 | 73 | adantl | |- ( ( W e. CPreHil /\ U e. S ) -> ( U i^i ( Base ` W ) ) = ( Base ` X ) ) |
| 75 | 74 | reseq2d | |- ( ( W e. CPreHil /\ U e. S ) -> ( ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) |` ( U i^i ( Base ` W ) ) ) = ( ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) |` ( Base ` X ) ) ) |
| 76 | 72 75 | eqtrd | |- ( ( W e. CPreHil /\ U e. S ) -> ( ( norm ` W ) |` U ) = ( ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) |` ( Base ` X ) ) ) |
| 77 | 1 58 | ressbasss | |- ( Base ` X ) C_ ( Base ` W ) |
| 78 | 77 | a1i | |- ( ( W e. CPreHil /\ U e. S ) -> ( Base ` X ) C_ ( Base ` W ) ) |
| 79 | 78 | resmptd | |- ( ( W e. CPreHil /\ U e. S ) -> ( ( b e. ( Base ` W ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) |` ( Base ` X ) ) = ( b e. ( Base ` X ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) ) |
| 80 | 57 76 79 | 3eqtrd | |- ( ( W e. CPreHil /\ U e. S ) -> ( norm ` X ) = ( b e. ( Base ` X ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) ) |
| 81 | eqid | |- ( Base ` X ) = ( Base ` X ) |
|
| 82 | eqid | |- ( .i ` X ) = ( .i ` X ) |
|
| 83 | eqid | |- ( Scalar ` X ) = ( Scalar ` X ) |
|
| 84 | eqid | |- ( Base ` ( Scalar ` X ) ) = ( Base ` ( Scalar ` X ) ) |
|
| 85 | 81 82 55 83 84 | iscph | |- ( X e. CPreHil <-> ( ( X e. PreHil /\ X e. NrmMod /\ ( Scalar ` X ) = ( CCfld |`s ( Base ` ( Scalar ` X ) ) ) ) /\ ( sqrt " ( ( Base ` ( Scalar ` X ) ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` ( Scalar ` X ) ) /\ ( norm ` X ) = ( b e. ( Base ` X ) |-> ( sqrt ` ( b ( .i ` X ) b ) ) ) ) ) |
| 86 | 19 50 80 85 | syl3anbrc | |- ( ( W e. CPreHil /\ U e. S ) -> X e. CPreHil ) |