This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subcomplex pre-Hilbert space is a vector space over a subfield of CCfld . (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphsca.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| cphsca.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | cphsca | ⊢ ( 𝑊 ∈ ℂPreHil → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphsca.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | cphsca.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 4 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 5 | eqid | ⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) | |
| 6 | 3 4 5 1 2 | iscph | ⊢ ( 𝑊 ∈ ℂPreHil ↔ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ ( norm ‘ 𝑊 ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) ) |
| 7 | 6 | simp1bi | ⊢ ( 𝑊 ∈ ℂPreHil → ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ) |
| 8 | 7 | simp3d | ⊢ ( 𝑊 ∈ ℂPreHil → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |