This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar field of a subcomplex pre-Hilbert space is closed under square roots of nonnegative reals. (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphsca.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| cphsca.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | cphsqrtcl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( √ ‘ 𝐴 ) ∈ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphsca.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | cphsca.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | sqrtf | ⊢ √ : ℂ ⟶ ℂ | |
| 4 | ffn | ⊢ ( √ : ℂ ⟶ ℂ → √ Fn ℂ ) | |
| 5 | 3 4 | ax-mp | ⊢ √ Fn ℂ |
| 6 | inss2 | ⊢ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ⊆ ( 0 [,) +∞ ) | |
| 7 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 8 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 9 | 7 8 | sstri | ⊢ ( 0 [,) +∞ ) ⊆ ℂ |
| 10 | 6 9 | sstri | ⊢ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ⊆ ℂ |
| 11 | simp1 | ⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ 𝐾 ) | |
| 12 | elrege0 | ⊢ ( 𝐴 ∈ ( 0 [,) +∞ ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) | |
| 13 | 12 | biimpri | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ( 0 [,) +∞ ) ) |
| 14 | 13 | 3adant1 | ⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ( 0 [,) +∞ ) ) |
| 15 | 11 14 | elind | ⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) |
| 16 | fnfvima | ⊢ ( ( √ Fn ℂ ∧ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ⊆ ℂ ∧ 𝐴 ∈ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) → ( √ ‘ 𝐴 ) ∈ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ) | |
| 17 | 5 10 15 16 | mp3an12i | ⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ) |
| 18 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 19 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 20 | eqid | ⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) | |
| 21 | 18 19 20 1 2 | iscph | ⊢ ( 𝑊 ∈ ℂPreHil ↔ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ ( norm ‘ 𝑊 ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) ) |
| 22 | 21 | simp2bi | ⊢ ( 𝑊 ∈ ℂPreHil → ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ) |
| 23 | 22 | sselda | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( √ ‘ 𝐴 ) ∈ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ) → ( √ ‘ 𝐴 ) ∈ 𝐾 ) |
| 24 | 17 23 | sylan2 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( √ ‘ 𝐴 ) ∈ 𝐾 ) |