This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subcomplex pre-Hilbert space is a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cphphl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 2 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) | |
| 4 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 5 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 6 | 1 2 3 4 5 | iscph | ⊢ ( 𝑊 ∈ ℂPreHil ↔ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) ∧ ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( norm ‘ 𝑊 ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) ) |
| 7 | 6 | simp1bi | ⊢ ( 𝑊 ∈ ℂPreHil → ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
| 8 | 7 | simp1d | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) |