This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of the elements of a sequence of pairwise coprime positive integers is coprime to a positive integer which is coprime to all integers of the sequence. (Contributed by AV, 18-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coprmprod | ⊢ ( ( ( 𝑀 ∈ Fin ∧ 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ 𝑀 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) → ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ( ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ ℕ ↔ ∅ ⊆ ℕ ) ) | |
| 2 | 1 | 3anbi1d | ⊢ ( 𝑥 = ∅ → ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ↔ ( ∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) |
| 3 | raleq | ⊢ ( 𝑥 = ∅ → ( ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ∀ 𝑚 ∈ ∅ ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) | |
| 4 | difeq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ∖ { 𝑚 } ) = ( ∅ ∖ { 𝑚 } ) ) | |
| 5 | 4 | raleqdv | ⊢ ( 𝑥 = ∅ → ( ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 6 | 5 | raleqbi1dv | ⊢ ( 𝑥 = ∅ → ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑚 ∈ ∅ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 7 | 2 3 6 | 3anbi123d | ⊢ ( 𝑥 = ∅ → ( ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ↔ ( ( ∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ∅ ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ∅ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) ) |
| 8 | prodeq1 | ⊢ ( 𝑥 = ∅ → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) = ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) ) | |
| 9 | 8 | oveq1d | ⊢ ( 𝑥 = ∅ → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) |
| 10 | 9 | eqeq1d | ⊢ ( 𝑥 = ∅ → ( ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ( ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
| 11 | 7 10 | imbi12d | ⊢ ( 𝑥 = ∅ → ( ( ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ↔ ( ( ( ∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ∅ ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ∅ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) |
| 12 | sseq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ ℕ ↔ 𝑦 ⊆ ℕ ) ) | |
| 13 | 12 | 3anbi1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ↔ ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) |
| 14 | raleq | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) | |
| 15 | difeq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∖ { 𝑚 } ) = ( 𝑦 ∖ { 𝑚 } ) ) | |
| 16 | 15 | raleqdv | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 17 | 16 | raleqbi1dv | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 18 | 13 14 17 | 3anbi123d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ↔ ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) ) |
| 19 | prodeq1 | ⊢ ( 𝑥 = 𝑦 → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) = ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) | |
| 20 | 19 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) |
| 21 | 20 | eqeq1d | ⊢ ( 𝑥 = 𝑦 → ( ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
| 22 | 18 21 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ↔ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) |
| 23 | sseq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ⊆ ℕ ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ) ) | |
| 24 | 23 | 3anbi1d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ↔ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) |
| 25 | raleq | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) | |
| 26 | difeq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ∖ { 𝑚 } ) = ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ) | |
| 27 | 26 | raleqdv | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 28 | 27 | raleqbi1dv | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 29 | 24 25 28 | 3anbi123d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ↔ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) ) |
| 30 | prodeq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) = ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ) | |
| 31 | 30 | oveq1d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) |
| 32 | 31 | eqeq1d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
| 33 | 29 32 | imbi12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ↔ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) |
| 34 | sseq1 | ⊢ ( 𝑥 = 𝑀 → ( 𝑥 ⊆ ℕ ↔ 𝑀 ⊆ ℕ ) ) | |
| 35 | 34 | 3anbi1d | ⊢ ( 𝑥 = 𝑀 → ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ↔ ( 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) |
| 36 | raleq | ⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ∀ 𝑚 ∈ 𝑀 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) | |
| 37 | difeq1 | ⊢ ( 𝑥 = 𝑀 → ( 𝑥 ∖ { 𝑚 } ) = ( 𝑀 ∖ { 𝑚 } ) ) | |
| 38 | 37 | raleqdv | ⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 39 | 38 | raleqbi1dv | ⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 40 | 35 36 39 | 3anbi123d | ⊢ ( 𝑥 = 𝑀 → ( ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ↔ ( ( 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑀 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) ) |
| 41 | prodeq1 | ⊢ ( 𝑥 = 𝑀 → ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) = ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) ) | |
| 42 | 41 | oveq1d | ⊢ ( 𝑥 = 𝑀 → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) |
| 43 | 42 | eqeq1d | ⊢ ( 𝑥 = 𝑀 → ( ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ( ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
| 44 | 40 43 | imbi12d | ⊢ ( 𝑥 = 𝑀 → ( ( ( ( 𝑥 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑥 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑥 ∀ 𝑛 ∈ ( 𝑥 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑥 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ↔ ( ( ( 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑀 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) |
| 45 | prod0 | ⊢ ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) = 1 | |
| 46 | 45 | a1i | ⊢ ( 𝑁 ∈ ℕ → ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) = 1 ) |
| 47 | 46 | oveq1d | ⊢ ( 𝑁 ∈ ℕ → ( ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( 1 gcd 𝑁 ) ) |
| 48 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 49 | 1gcd | ⊢ ( 𝑁 ∈ ℤ → ( 1 gcd 𝑁 ) = 1 ) | |
| 50 | 48 49 | syl | ⊢ ( 𝑁 ∈ ℕ → ( 1 gcd 𝑁 ) = 1 ) |
| 51 | 47 50 | eqtrd | ⊢ ( 𝑁 ∈ ℕ → ( ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) |
| 52 | 51 | 3ad2ant2 | ⊢ ( ( ∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) |
| 53 | 52 | 3ad2ant1 | ⊢ ( ( ( ∅ ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ∅ ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ∅ ∀ 𝑛 ∈ ( ∅ ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ ∅ ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) |
| 54 | nfv | ⊢ Ⅎ 𝑚 ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) | |
| 55 | nfcv | ⊢ Ⅎ 𝑚 ( 𝐹 ‘ 𝑧 ) | |
| 56 | simprl | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑦 ∈ Fin ) | |
| 57 | unss | ⊢ ( ( 𝑦 ⊆ ℕ ∧ { 𝑧 } ⊆ ℕ ) ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ) | |
| 58 | vex | ⊢ 𝑧 ∈ V | |
| 59 | 58 | snss | ⊢ ( 𝑧 ∈ ℕ ↔ { 𝑧 } ⊆ ℕ ) |
| 60 | 59 | biimpri | ⊢ ( { 𝑧 } ⊆ ℕ → 𝑧 ∈ ℕ ) |
| 61 | 60 | adantl | ⊢ ( ( 𝑦 ⊆ ℕ ∧ { 𝑧 } ⊆ ℕ ) → 𝑧 ∈ ℕ ) |
| 62 | 57 61 | sylbir | ⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ → 𝑧 ∈ ℕ ) |
| 63 | 62 | 3ad2ant1 | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → 𝑧 ∈ ℕ ) |
| 64 | 63 | adantr | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑧 ∈ ℕ ) |
| 65 | simprr | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ¬ 𝑧 ∈ 𝑦 ) | |
| 66 | simpll3 | ⊢ ( ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ 𝑚 ∈ 𝑦 ) → 𝐹 : ℕ ⟶ ℕ ) | |
| 67 | simpl | ⊢ ( ( 𝑦 ⊆ ℕ ∧ { 𝑧 } ⊆ ℕ ) → 𝑦 ⊆ ℕ ) | |
| 68 | 57 67 | sylbir | ⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ → 𝑦 ⊆ ℕ ) |
| 69 | 68 | 3ad2ant1 | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → 𝑦 ⊆ ℕ ) |
| 70 | 69 | adantr | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑦 ⊆ ℕ ) |
| 71 | 70 | sselda | ⊢ ( ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ 𝑚 ∈ 𝑦 ) → 𝑚 ∈ ℕ ) |
| 72 | 66 71 | ffvelcdmd | ⊢ ( ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ 𝑚 ∈ 𝑦 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℕ ) |
| 73 | 72 | nncnd | ⊢ ( ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ 𝑚 ∈ 𝑦 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
| 74 | fveq2 | ⊢ ( 𝑚 = 𝑧 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 75 | simpr | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → 𝐹 : ℕ ⟶ ℕ ) | |
| 76 | 62 | adantr | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → 𝑧 ∈ ℕ ) |
| 77 | 75 76 | ffvelcdmd | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) |
| 78 | 77 | 3adant2 | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) |
| 79 | 78 | adantr | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) |
| 80 | 79 | nncnd | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 81 | 54 55 56 64 65 73 74 80 | fprodsplitsn | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) |
| 82 | 81 | oveq1d | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) gcd 𝑁 ) ) |
| 83 | 56 72 | fprodnncl | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ) |
| 84 | 83 | nnzd | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℤ ) |
| 85 | 79 | nnzd | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℤ ) |
| 86 | 84 85 | zmulcld | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ∈ ℤ ) |
| 87 | 48 | 3ad2ant2 | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → 𝑁 ∈ ℤ ) |
| 88 | 87 | adantr | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑁 ∈ ℤ ) |
| 89 | 86 88 | gcdcomd | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) gcd 𝑁 ) = ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 90 | 82 89 | eqtrd | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 91 | 90 | ex | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
| 92 | 91 | 3ad2ant1 | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
| 93 | 92 | com12 | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
| 94 | 93 | adantr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
| 95 | 94 | imp | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 96 | simpl2 | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑁 ∈ ℕ ) | |
| 97 | 96 83 79 | 3jca | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝑁 ∈ ℕ ∧ ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) |
| 98 | 97 | ex | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝑁 ∈ ℕ ∧ ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) ) |
| 99 | 98 | 3ad2ant1 | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝑁 ∈ ℕ ∧ ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) ) |
| 100 | 99 | com12 | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( 𝑁 ∈ ℕ ∧ ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) ) |
| 101 | 100 | adantr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( 𝑁 ∈ ℕ ∧ ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) ) |
| 102 | 101 | imp | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ( 𝑁 ∈ ℕ ∧ ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) |
| 103 | 88 84 | gcdcomd | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝑁 gcd ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) |
| 104 | 103 | ex | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝑁 gcd ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) ) |
| 105 | 104 | 3ad2ant1 | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝑁 gcd ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) ) |
| 106 | 105 | com12 | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( 𝑁 gcd ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) ) |
| 107 | 106 | adantr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( 𝑁 gcd ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) ) |
| 108 | 107 | imp | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ( 𝑁 gcd ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) ) |
| 109 | 68 | a1i | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ → 𝑦 ⊆ ℕ ) ) |
| 110 | idd | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ ) ) | |
| 111 | idd | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝐹 : ℕ ⟶ ℕ → 𝐹 : ℕ ⟶ ℕ ) ) | |
| 112 | 109 110 111 | 3anim123d | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) |
| 113 | ssun1 | ⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) | |
| 114 | ssralv | ⊢ ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 → ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) | |
| 115 | 113 114 | mp1i | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 → ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
| 116 | ssralv | ⊢ ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) | |
| 117 | 113 116 | mp1i | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 118 | 113 | a1i | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑚 ∈ 𝑦 ) → 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
| 119 | 118 | ssdifd | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑚 ∈ 𝑦 ) → ( 𝑦 ∖ { 𝑚 } ) ⊆ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ) |
| 120 | ssralv | ⊢ ( ( 𝑦 ∖ { 𝑚 } ) ⊆ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) → ( ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) | |
| 121 | 119 120 | syl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ 𝑚 ∈ 𝑦 ) → ( ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 122 | 121 | ralimdva | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 123 | 117 122 | syld | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 124 | 112 115 123 | 3anim123d | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) ) |
| 125 | 124 | imim1d | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) |
| 126 | 125 | imp31 | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) |
| 127 | 108 126 | eqtrd | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ( 𝑁 gcd ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) = 1 ) |
| 128 | rpmulgcd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ∧ ( 𝑁 gcd ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ) = 1 ) → ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑁 gcd ( 𝐹 ‘ 𝑧 ) ) ) | |
| 129 | 102 127 128 | syl2anc | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ( 𝑁 gcd ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑁 gcd ( 𝐹 ‘ 𝑧 ) ) ) |
| 130 | vsnid | ⊢ 𝑧 ∈ { 𝑧 } | |
| 131 | 130 | olci | ⊢ ( 𝑧 ∈ 𝑦 ∨ 𝑧 ∈ { 𝑧 } ) |
| 132 | elun | ⊢ ( 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑧 ∈ 𝑦 ∨ 𝑧 ∈ { 𝑧 } ) ) | |
| 133 | 131 132 | mpbir | ⊢ 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) |
| 134 | 74 | oveq1d | ⊢ ( 𝑚 = 𝑧 → ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = ( ( 𝐹 ‘ 𝑧 ) gcd 𝑁 ) ) |
| 135 | 134 | eqeq1d | ⊢ ( 𝑚 = 𝑧 → ( ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ↔ ( ( 𝐹 ‘ 𝑧 ) gcd 𝑁 ) = 1 ) ) |
| 136 | 135 | rspcv | ⊢ ( 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 → ( ( 𝐹 ‘ 𝑧 ) gcd 𝑁 ) = 1 ) ) |
| 137 | 133 136 | mp1i | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 → ( ( 𝐹 ‘ 𝑧 ) gcd 𝑁 ) = 1 ) ) |
| 138 | 137 | imp | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) → ( ( 𝐹 ‘ 𝑧 ) gcd 𝑁 ) = 1 ) |
| 139 | 78 | nnzd | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℤ ) |
| 140 | 87 139 | gcdcomd | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( 𝑁 gcd ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑧 ) gcd 𝑁 ) ) |
| 141 | 140 | eqeq1d | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ( 𝑁 gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ↔ ( ( 𝐹 ‘ 𝑧 ) gcd 𝑁 ) = 1 ) ) |
| 142 | 141 | adantr | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) → ( ( 𝑁 gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ↔ ( ( 𝐹 ‘ 𝑧 ) gcd 𝑁 ) = 1 ) ) |
| 143 | 138 142 | mpbird | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) → ( 𝑁 gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) |
| 144 | 143 | 3adant3 | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( 𝑁 gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) |
| 145 | 144 | adantl | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ( 𝑁 gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) |
| 146 | 95 129 145 | 3eqtrd | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) |
| 147 | 146 | exp31 | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) |
| 148 | 11 22 33 44 53 147 | findcard2s | ⊢ ( 𝑀 ∈ Fin → ( ( ( 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ∧ ∀ 𝑚 ∈ 𝑀 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ∧ ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |
| 149 | 148 | 3expd | ⊢ ( 𝑀 ∈ Fin → ( ( 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ∀ 𝑚 ∈ 𝑀 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 → ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ( ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) ) |
| 150 | 149 | 3expd | ⊢ ( 𝑀 ∈ Fin → ( 𝑀 ⊆ ℕ → ( 𝑁 ∈ ℕ → ( 𝐹 : ℕ ⟶ ℕ → ( ∀ 𝑚 ∈ 𝑀 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 → ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ( ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) ) ) ) |
| 151 | 150 | 3imp | ⊢ ( ( 𝑀 ∈ Fin ∧ 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐹 : ℕ ⟶ ℕ → ( ∀ 𝑚 ∈ 𝑀 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 → ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ( ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) ) ) |
| 152 | 151 | 3imp | ⊢ ( ( ( 𝑀 ∈ Fin ∧ 𝑀 ⊆ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ 𝑀 ( ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) → ( ∀ 𝑚 ∈ 𝑀 ∀ 𝑛 ∈ ( 𝑀 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ( ∏ 𝑚 ∈ 𝑀 ( 𝐹 ‘ 𝑚 ) gcd 𝑁 ) = 1 ) ) |