This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for coprmproddvds : Induction step. (Contributed by AV, 19-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coprmproddvdslem | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | ⊢ Ⅎ 𝑚 ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) | |
| 2 | nfcv | ⊢ Ⅎ 𝑚 ( 𝐹 ‘ 𝑧 ) | |
| 3 | simpll | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → 𝑦 ∈ Fin ) | |
| 4 | unss | ⊢ ( ( 𝑦 ⊆ ℕ ∧ { 𝑧 } ⊆ ℕ ) ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ) | |
| 5 | vex | ⊢ 𝑧 ∈ V | |
| 6 | 5 | snss | ⊢ ( 𝑧 ∈ ℕ ↔ { 𝑧 } ⊆ ℕ ) |
| 7 | 6 | biimpri | ⊢ ( { 𝑧 } ⊆ ℕ → 𝑧 ∈ ℕ ) |
| 8 | 7 | adantl | ⊢ ( ( 𝑦 ⊆ ℕ ∧ { 𝑧 } ⊆ ℕ ) → 𝑧 ∈ ℕ ) |
| 9 | 4 8 | sylbir | ⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ → 𝑧 ∈ ℕ ) |
| 10 | 9 | adantr | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → 𝑧 ∈ ℕ ) |
| 11 | 10 | adantl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → 𝑧 ∈ ℕ ) |
| 12 | simplr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ¬ 𝑧 ∈ 𝑦 ) | |
| 13 | simprrr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → 𝐹 : ℕ ⟶ ℕ ) | |
| 14 | 13 | adantr | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ 𝑚 ∈ 𝑦 ) → 𝐹 : ℕ ⟶ ℕ ) |
| 15 | simpl | ⊢ ( ( 𝑦 ⊆ ℕ ∧ { 𝑧 } ⊆ ℕ ) → 𝑦 ⊆ ℕ ) | |
| 16 | 4 15 | sylbir | ⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ → 𝑦 ⊆ ℕ ) |
| 17 | 16 | adantr | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → 𝑦 ⊆ ℕ ) |
| 18 | 17 | adantl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → 𝑦 ⊆ ℕ ) |
| 19 | 18 | sselda | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ 𝑚 ∈ 𝑦 ) → 𝑚 ∈ ℕ ) |
| 20 | 14 19 | ffvelcdmd | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ 𝑚 ∈ 𝑦 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℕ ) |
| 21 | 20 | nncnd | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ 𝑚 ∈ 𝑦 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
| 22 | fveq2 | ⊢ ( 𝑚 = 𝑧 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 23 | 13 11 | ffvelcdmd | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) |
| 24 | 23 | nncnd | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 25 | 1 2 3 11 12 21 22 24 | fprodsplitsn | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) |
| 26 | 25 | ad2ant2r | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) → ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) = ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ) |
| 27 | simprl | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑦 ∈ Fin ) | |
| 28 | simprr | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → 𝐹 : ℕ ⟶ ℕ ) | |
| 29 | 28 | adantr | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝐹 : ℕ ⟶ ℕ ) |
| 30 | 29 | adantr | ⊢ ( ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ 𝑚 ∈ 𝑦 ) → 𝐹 : ℕ ⟶ ℕ ) |
| 31 | 17 | adantr | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑦 ⊆ ℕ ) |
| 32 | 31 | sselda | ⊢ ( ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ 𝑚 ∈ 𝑦 ) → 𝑚 ∈ ℕ ) |
| 33 | 30 32 | ffvelcdmd | ⊢ ( ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ 𝑚 ∈ 𝑦 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℕ ) |
| 34 | 27 33 | fprodnncl | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ) |
| 35 | 34 | ex | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ) ) |
| 36 | 35 | adantr | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ) ) |
| 37 | 36 | com12 | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ) ) |
| 38 | 37 | adantr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ) ) |
| 39 | 38 | imp | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℕ ) |
| 40 | 39 | nnzd | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℤ ) |
| 41 | 28 10 | ffvelcdmd | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) |
| 42 | 41 | nnzd | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℤ ) |
| 43 | 42 | adantr | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℤ ) |
| 44 | 43 | adantl | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℤ ) |
| 45 | nnz | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℤ ) | |
| 46 | 45 | adantr | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → 𝐾 ∈ ℤ ) |
| 47 | 46 | adantl | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → 𝐾 ∈ ℤ ) |
| 48 | 47 | adantr | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → 𝐾 ∈ ℤ ) |
| 49 | 48 | adantl | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) → 𝐾 ∈ ℤ ) |
| 50 | 40 44 49 | 3jca | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℤ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ) ) |
| 51 | simpl | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ) → 𝐹 : ℕ ⟶ ℕ ) | |
| 52 | 9 | adantl | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ) → 𝑧 ∈ ℕ ) |
| 53 | 51 52 | ffvelcdmd | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) |
| 54 | 53 | ex | ⊢ ( 𝐹 : ℕ ⟶ ℕ → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ → ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) |
| 55 | 54 | adantl | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ → ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) |
| 56 | 55 | impcom | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) |
| 57 | 56 | adantl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) |
| 58 | 3 18 57 | 3jca | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( 𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) |
| 59 | 58 | adantr | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( 𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ) |
| 60 | 13 | adantr | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → 𝐹 : ℕ ⟶ ℕ ) |
| 61 | vsnid | ⊢ 𝑧 ∈ { 𝑧 } | |
| 62 | 61 | olci | ⊢ ( 𝑧 ∈ 𝑦 ∨ 𝑧 ∈ { 𝑧 } ) |
| 63 | elun | ⊢ ( 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑧 ∈ 𝑦 ∨ 𝑧 ∈ { 𝑧 } ) ) | |
| 64 | 62 63 | mpbir | ⊢ 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) |
| 65 | 64 | a1i | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ 𝑚 ∈ 𝑦 ) → 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ) |
| 66 | snssi | ⊢ ( 𝑚 ∈ 𝑦 → { 𝑚 } ⊆ 𝑦 ) | |
| 67 | 66 | ssneld | ⊢ ( 𝑚 ∈ 𝑦 → ( ¬ 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ { 𝑚 } ) ) |
| 68 | 67 | com12 | ⊢ ( ¬ 𝑧 ∈ 𝑦 → ( 𝑚 ∈ 𝑦 → ¬ 𝑧 ∈ { 𝑚 } ) ) |
| 69 | 68 | adantl | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝑚 ∈ 𝑦 → ¬ 𝑧 ∈ { 𝑚 } ) ) |
| 70 | 69 | adantr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( 𝑚 ∈ 𝑦 → ¬ 𝑧 ∈ { 𝑚 } ) ) |
| 71 | 70 | imp | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ 𝑚 ∈ 𝑦 ) → ¬ 𝑧 ∈ { 𝑚 } ) |
| 72 | 65 71 | eldifd | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ 𝑚 ∈ 𝑦 ) → 𝑧 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ) |
| 73 | fveq2 | ⊢ ( 𝑛 = 𝑧 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 74 | 73 | oveq2d | ⊢ ( 𝑛 = 𝑧 → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) ) |
| 75 | 74 | eqeq1d | ⊢ ( 𝑛 = 𝑧 → ( ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) ) |
| 76 | 75 | rspcv | ⊢ ( 𝑧 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) → ( ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) ) |
| 77 | 72 76 | syl | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ 𝑚 ∈ 𝑦 ) → ( ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) ) |
| 78 | 77 | ralimdva | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) ) |
| 79 | ralunb | ⊢ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ↔ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ { 𝑧 } ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) | |
| 80 | 79 | simplbi | ⊢ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) |
| 81 | 78 80 | impel | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) |
| 82 | raldifb | ⊢ ( ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ↔ ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) | |
| 83 | ralunb | ⊢ ( ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ↔ ( ∀ 𝑛 ∈ 𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ∧ ∀ 𝑛 ∈ { 𝑧 } ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) ) | |
| 84 | raldifb | ⊢ ( ∀ 𝑛 ∈ 𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ↔ ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) | |
| 85 | 84 | biimpi | ⊢ ( ∀ 𝑛 ∈ 𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) |
| 86 | 85 | adantr | ⊢ ( ( ∀ 𝑛 ∈ 𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ∧ ∀ 𝑛 ∈ { 𝑧 } ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) → ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) |
| 87 | 83 86 | sylbi | ⊢ ( ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) |
| 88 | 82 87 | sylbir | ⊢ ( ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) |
| 89 | 88 | ralimi | ⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) |
| 90 | 89 | adantr | ⊢ ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ { 𝑧 } ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) |
| 91 | 79 90 | sylbi | ⊢ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) |
| 92 | 91 | adantl | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) |
| 93 | coprmprod | ⊢ ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ∧ 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) → ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) ) | |
| 94 | 93 | imp | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ⊆ ℕ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ ) ∧ 𝐹 : ℕ ⟶ ℕ ∧ ∀ 𝑚 ∈ 𝑦 ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) ∧ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) |
| 95 | 59 60 81 92 94 | syl31anc | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) |
| 96 | 95 | ex | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) ) |
| 97 | 96 | adantrd | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) ) |
| 98 | 97 | expimpd | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) ) |
| 99 | 98 | adantr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) ) |
| 100 | 99 | imp | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) |
| 101 | 83 | simplbi | ⊢ ( ∀ 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ∀ 𝑛 ∈ 𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 102 | 82 101 | sylbir | ⊢ ( ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑛 ∈ 𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 103 | 102 | ralimi | ⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ 𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 104 | 103 | adantr | ⊢ ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ { 𝑧 } ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ 𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 105 | 79 104 | sylbi | ⊢ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 → ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ 𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ) |
| 106 | ralunb | ⊢ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ↔ ( ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ∧ ∀ 𝑚 ∈ { 𝑧 } ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) | |
| 107 | 106 | simplbi | ⊢ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 → ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) |
| 108 | 84 | ralbii | ⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ 𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ↔ ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) |
| 109 | 108 | anbi1i | ⊢ ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ 𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ↔ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
| 110 | 17 | adantl | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → 𝑦 ⊆ ℕ ) |
| 111 | simprrl | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → 𝐾 ∈ ℕ ) | |
| 112 | simprrr | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → 𝐹 : ℕ ⟶ ℕ ) | |
| 113 | 110 111 112 | jca32 | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) |
| 114 | simplr | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) | |
| 115 | pm2.27 | ⊢ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ( ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) | |
| 116 | 113 114 115 | syl2anc | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
| 117 | 116 | exp31 | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → ( ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) ) |
| 118 | 117 | com24 | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) ) |
| 119 | 118 | imp | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) → ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) |
| 120 | 119 | imp | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
| 121 | 109 120 | biimtrid | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ 𝑦 ( 𝑛 ∉ { 𝑚 } → ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ) ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
| 122 | 105 107 121 | syl2ani | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ) → ( ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) |
| 123 | 122 | impr | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) |
| 124 | 22 | breq1d | ⊢ ( 𝑚 = 𝑧 → ( ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ↔ ( 𝐹 ‘ 𝑧 ) ∥ 𝐾 ) ) |
| 125 | 124 | rspcv | ⊢ ( 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 → ( 𝐹 ‘ 𝑧 ) ∥ 𝐾 ) ) |
| 126 | 64 125 | ax-mp | ⊢ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 → ( 𝐹 ‘ 𝑧 ) ∥ 𝐾 ) |
| 127 | 126 | adantl | ⊢ ( ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ( 𝐹 ‘ 𝑧 ) ∥ 𝐾 ) |
| 128 | 127 | adantl | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ( 𝐹 ‘ 𝑧 ) ∥ 𝐾 ) |
| 129 | 128 | adantl | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) → ( 𝐹 ‘ 𝑧 ) ∥ 𝐾 ) |
| 130 | coprmdvds2 | ⊢ ( ( ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℤ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ) ∧ ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) → ( ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ∧ ( 𝐹 ‘ 𝑧 ) ∥ 𝐾 ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ∥ 𝐾 ) ) | |
| 131 | 130 | imp | ⊢ ( ( ( ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∈ ℤ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ) ∧ ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑧 ) ) = 1 ) ∧ ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ∧ ( 𝐹 ‘ 𝑧 ) ∥ 𝐾 ) ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ∥ 𝐾 ) |
| 132 | 50 100 123 129 131 | syl22anc | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) → ( ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) · ( 𝐹 ‘ 𝑧 ) ) ∥ 𝐾 ) |
| 133 | 26 132 | eqbrtrd | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) → ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) |
| 134 | 133 | exp31 | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ( 𝑦 ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑛 ∈ ( 𝑦 ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ 𝑦 ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) → ( ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℕ ∧ ( 𝐾 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ℕ ) ) ∧ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∀ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑚 } ) ( ( 𝐹 ‘ 𝑚 ) gcd ( 𝐹 ‘ 𝑛 ) ) = 1 ∧ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) → ∏ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐹 ‘ 𝑚 ) ∥ 𝐾 ) ) ) |