This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If K and M are relatively prime, then the GCD of K and M x. N is the GCD of K and N . (Contributed by Scott Fenton, 12-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpmulgcd | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) = ( 𝐾 gcd 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdmultiple | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐾 gcd ( 𝐾 · 𝑁 ) ) = 𝐾 ) | |
| 2 | 1 | 3adant2 | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐾 gcd ( 𝐾 · 𝑁 ) ) = 𝐾 ) |
| 3 | 2 | oveq1d | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐾 gcd ( 𝐾 · 𝑁 ) ) gcd ( 𝑀 · 𝑁 ) ) = ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ) |
| 4 | nnz | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℤ ) | |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝐾 ∈ ℤ ) |
| 6 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 7 | zmulcl | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 · 𝑁 ) ∈ ℤ ) | |
| 8 | 4 6 7 | syl2an | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐾 · 𝑁 ) ∈ ℤ ) |
| 9 | 8 | 3adant2 | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐾 · 𝑁 ) ∈ ℤ ) |
| 10 | nnz | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) | |
| 11 | zmulcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) | |
| 12 | 10 6 11 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) |
| 13 | 12 | 3adant1 | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) |
| 14 | gcdass | ⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝐾 · 𝑁 ) ∈ ℤ ∧ ( 𝑀 · 𝑁 ) ∈ ℤ ) → ( ( 𝐾 gcd ( 𝐾 · 𝑁 ) ) gcd ( 𝑀 · 𝑁 ) ) = ( 𝐾 gcd ( ( 𝐾 · 𝑁 ) gcd ( 𝑀 · 𝑁 ) ) ) ) | |
| 15 | 5 9 13 14 | syl3anc | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐾 gcd ( 𝐾 · 𝑁 ) ) gcd ( 𝑀 · 𝑁 ) ) = ( 𝐾 gcd ( ( 𝐾 · 𝑁 ) gcd ( 𝑀 · 𝑁 ) ) ) ) |
| 16 | 3 15 | eqtr3d | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) = ( 𝐾 gcd ( ( 𝐾 · 𝑁 ) gcd ( 𝑀 · 𝑁 ) ) ) ) |
| 17 | 16 | adantr | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) = ( 𝐾 gcd ( ( 𝐾 · 𝑁 ) gcd ( 𝑀 · 𝑁 ) ) ) ) |
| 18 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 19 | mulgcdr | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐾 · 𝑁 ) gcd ( 𝑀 · 𝑁 ) ) = ( ( 𝐾 gcd 𝑀 ) · 𝑁 ) ) | |
| 20 | 4 10 18 19 | syl3an | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐾 · 𝑁 ) gcd ( 𝑀 · 𝑁 ) ) = ( ( 𝐾 gcd 𝑀 ) · 𝑁 ) ) |
| 21 | oveq1 | ⊢ ( ( 𝐾 gcd 𝑀 ) = 1 → ( ( 𝐾 gcd 𝑀 ) · 𝑁 ) = ( 1 · 𝑁 ) ) | |
| 22 | 20 21 | sylan9eq | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → ( ( 𝐾 · 𝑁 ) gcd ( 𝑀 · 𝑁 ) ) = ( 1 · 𝑁 ) ) |
| 23 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 24 | 23 | 3ad2ant3 | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℂ ) |
| 25 | 24 | adantr | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → 𝑁 ∈ ℂ ) |
| 26 | 25 | mullidd | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → ( 1 · 𝑁 ) = 𝑁 ) |
| 27 | 22 26 | eqtrd | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → ( ( 𝐾 · 𝑁 ) gcd ( 𝑀 · 𝑁 ) ) = 𝑁 ) |
| 28 | 27 | oveq2d | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → ( 𝐾 gcd ( ( 𝐾 · 𝑁 ) gcd ( 𝑀 · 𝑁 ) ) ) = ( 𝐾 gcd 𝑁 ) ) |
| 29 | 17 28 | eqtrd | ⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) = ( 𝐾 gcd 𝑁 ) ) |