This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the uniform set of a complete metric space is the uniform structure generated by its metric, then it is a complete uniform space. (Contributed by Thierry Arnoux, 15-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmetcusp1.x | ⊢ 𝑋 = ( Base ‘ 𝐹 ) | |
| cmetcusp1.d | ⊢ 𝐷 = ( ( dist ‘ 𝐹 ) ↾ ( 𝑋 × 𝑋 ) ) | ||
| cmetcusp1.u | ⊢ 𝑈 = ( UnifSt ‘ 𝐹 ) | ||
| Assertion | cmetcusp1 | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → 𝐹 ∈ CUnifSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmetcusp1.x | ⊢ 𝑋 = ( Base ‘ 𝐹 ) | |
| 2 | cmetcusp1.d | ⊢ 𝐷 = ( ( dist ‘ 𝐹 ) ↾ ( 𝑋 × 𝑋 ) ) | |
| 3 | cmetcusp1.u | ⊢ 𝑈 = ( UnifSt ‘ 𝐹 ) | |
| 4 | cmsms | ⊢ ( 𝐹 ∈ CMetSp → 𝐹 ∈ MetSp ) | |
| 5 | msxms | ⊢ ( 𝐹 ∈ MetSp → 𝐹 ∈ ∞MetSp ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐹 ∈ CMetSp → 𝐹 ∈ ∞MetSp ) |
| 7 | 1 2 3 | xmsusp | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → 𝐹 ∈ UnifSp ) |
| 8 | 6 7 | syl3an2 | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → 𝐹 ∈ UnifSp ) |
| 9 | simpl3 | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) ∧ 𝑐 ∈ ( Fil ‘ 𝑋 ) ) → 𝑈 = ( metUnif ‘ 𝐷 ) ) | |
| 10 | 9 | fveq2d | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) ∧ 𝑐 ∈ ( Fil ‘ 𝑋 ) ) → ( CauFilu ‘ 𝑈 ) = ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) |
| 11 | 10 | eleq2d | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) ∧ 𝑐 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑐 ∈ ( CauFilu ‘ 𝑈 ) ↔ 𝑐 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) ) |
| 12 | simpl1 | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) ∧ 𝑐 ∈ ( Fil ‘ 𝑋 ) ) → 𝑋 ≠ ∅ ) | |
| 13 | 1 2 | cmscmet | ⊢ ( 𝐹 ∈ CMetSp → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
| 14 | cmetmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 15 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 16 | 13 14 15 | 3syl | ⊢ ( 𝐹 ∈ CMetSp → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 17 | 16 | 3ad2ant2 | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 18 | 17 | adantr | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) ∧ 𝑐 ∈ ( Fil ‘ 𝑋 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 19 | simpr | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) ∧ 𝑐 ∈ ( Fil ‘ 𝑋 ) ) → 𝑐 ∈ ( Fil ‘ 𝑋 ) ) | |
| 20 | cfilucfil4 | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑐 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑐 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ↔ 𝑐 ∈ ( CauFil ‘ 𝐷 ) ) ) | |
| 21 | 12 18 19 20 | syl3anc | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) ∧ 𝑐 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑐 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ↔ 𝑐 ∈ ( CauFil ‘ 𝐷 ) ) ) |
| 22 | 11 21 | bitrd | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) ∧ 𝑐 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑐 ∈ ( CauFilu ‘ 𝑈 ) ↔ 𝑐 ∈ ( CauFil ‘ 𝐷 ) ) ) |
| 23 | eqid | ⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) | |
| 24 | 23 | iscmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑐 ∈ ( CauFil ‘ 𝐷 ) ( ( MetOpen ‘ 𝐷 ) fLim 𝑐 ) ≠ ∅ ) ) |
| 25 | 24 | simprbi | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ∀ 𝑐 ∈ ( CauFil ‘ 𝐷 ) ( ( MetOpen ‘ 𝐷 ) fLim 𝑐 ) ≠ ∅ ) |
| 26 | 13 25 | syl | ⊢ ( 𝐹 ∈ CMetSp → ∀ 𝑐 ∈ ( CauFil ‘ 𝐷 ) ( ( MetOpen ‘ 𝐷 ) fLim 𝑐 ) ≠ ∅ ) |
| 27 | eqid | ⊢ ( TopOpen ‘ 𝐹 ) = ( TopOpen ‘ 𝐹 ) | |
| 28 | 27 1 2 | xmstopn | ⊢ ( 𝐹 ∈ ∞MetSp → ( TopOpen ‘ 𝐹 ) = ( MetOpen ‘ 𝐷 ) ) |
| 29 | 6 28 | syl | ⊢ ( 𝐹 ∈ CMetSp → ( TopOpen ‘ 𝐹 ) = ( MetOpen ‘ 𝐷 ) ) |
| 30 | 29 | oveq1d | ⊢ ( 𝐹 ∈ CMetSp → ( ( TopOpen ‘ 𝐹 ) fLim 𝑐 ) = ( ( MetOpen ‘ 𝐷 ) fLim 𝑐 ) ) |
| 31 | 30 | neeq1d | ⊢ ( 𝐹 ∈ CMetSp → ( ( ( TopOpen ‘ 𝐹 ) fLim 𝑐 ) ≠ ∅ ↔ ( ( MetOpen ‘ 𝐷 ) fLim 𝑐 ) ≠ ∅ ) ) |
| 32 | 31 | ralbidv | ⊢ ( 𝐹 ∈ CMetSp → ( ∀ 𝑐 ∈ ( CauFil ‘ 𝐷 ) ( ( TopOpen ‘ 𝐹 ) fLim 𝑐 ) ≠ ∅ ↔ ∀ 𝑐 ∈ ( CauFil ‘ 𝐷 ) ( ( MetOpen ‘ 𝐷 ) fLim 𝑐 ) ≠ ∅ ) ) |
| 33 | 26 32 | mpbird | ⊢ ( 𝐹 ∈ CMetSp → ∀ 𝑐 ∈ ( CauFil ‘ 𝐷 ) ( ( TopOpen ‘ 𝐹 ) fLim 𝑐 ) ≠ ∅ ) |
| 34 | 33 | r19.21bi | ⊢ ( ( 𝐹 ∈ CMetSp ∧ 𝑐 ∈ ( CauFil ‘ 𝐷 ) ) → ( ( TopOpen ‘ 𝐹 ) fLim 𝑐 ) ≠ ∅ ) |
| 35 | 34 | ex | ⊢ ( 𝐹 ∈ CMetSp → ( 𝑐 ∈ ( CauFil ‘ 𝐷 ) → ( ( TopOpen ‘ 𝐹 ) fLim 𝑐 ) ≠ ∅ ) ) |
| 36 | 35 | 3ad2ant2 | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → ( 𝑐 ∈ ( CauFil ‘ 𝐷 ) → ( ( TopOpen ‘ 𝐹 ) fLim 𝑐 ) ≠ ∅ ) ) |
| 37 | 36 | adantr | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) ∧ 𝑐 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑐 ∈ ( CauFil ‘ 𝐷 ) → ( ( TopOpen ‘ 𝐹 ) fLim 𝑐 ) ≠ ∅ ) ) |
| 38 | 22 37 | sylbid | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) ∧ 𝑐 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑐 ∈ ( CauFilu ‘ 𝑈 ) → ( ( TopOpen ‘ 𝐹 ) fLim 𝑐 ) ≠ ∅ ) ) |
| 39 | 38 | ralrimiva | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → ∀ 𝑐 ∈ ( Fil ‘ 𝑋 ) ( 𝑐 ∈ ( CauFilu ‘ 𝑈 ) → ( ( TopOpen ‘ 𝐹 ) fLim 𝑐 ) ≠ ∅ ) ) |
| 40 | 1 3 27 | iscusp2 | ⊢ ( 𝐹 ∈ CUnifSp ↔ ( 𝐹 ∈ UnifSp ∧ ∀ 𝑐 ∈ ( Fil ‘ 𝑋 ) ( 𝑐 ∈ ( CauFilu ‘ 𝑈 ) → ( ( TopOpen ‘ 𝐹 ) fLim 𝑐 ) ≠ ∅ ) ) ) |
| 41 | 8 39 40 | sylanbrc | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → 𝐹 ∈ CUnifSp ) |