This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the uniform set of a metric space is the uniform structure generated by its metric, then it is a uniform space. (Contributed by Thierry Arnoux, 14-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xmsusp.x | ⊢ 𝑋 = ( Base ‘ 𝐹 ) | |
| xmsusp.d | ⊢ 𝐷 = ( ( dist ‘ 𝐹 ) ↾ ( 𝑋 × 𝑋 ) ) | ||
| xmsusp.u | ⊢ 𝑈 = ( UnifSt ‘ 𝐹 ) | ||
| Assertion | xmsusp | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → 𝐹 ∈ UnifSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmsusp.x | ⊢ 𝑋 = ( Base ‘ 𝐹 ) | |
| 2 | xmsusp.d | ⊢ 𝐷 = ( ( dist ‘ 𝐹 ) ↾ ( 𝑋 × 𝑋 ) ) | |
| 3 | xmsusp.u | ⊢ 𝑈 = ( UnifSt ‘ 𝐹 ) | |
| 4 | simp3 | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → 𝑈 = ( metUnif ‘ 𝐷 ) ) | |
| 5 | simp1 | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → 𝑋 ≠ ∅ ) | |
| 6 | 1 2 | xmsxmet | ⊢ ( 𝐹 ∈ ∞MetSp → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 8 | xmetpsmet | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) | |
| 9 | metuust | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( metUnif ‘ 𝐷 ) ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 10 | 8 9 | sylan2 | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( metUnif ‘ 𝐷 ) ∈ ( UnifOn ‘ 𝑋 ) ) |
| 11 | 5 7 10 | syl2anc | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → ( metUnif ‘ 𝐷 ) ∈ ( UnifOn ‘ 𝑋 ) ) |
| 12 | 4 11 | eqeltrd | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| 13 | xmetutop | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) = ( MetOpen ‘ 𝐷 ) ) | |
| 14 | 5 7 13 | syl2anc | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) = ( MetOpen ‘ 𝐷 ) ) |
| 15 | 4 | fveq2d | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → ( unifTop ‘ 𝑈 ) = ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ) |
| 16 | eqid | ⊢ ( TopOpen ‘ 𝐹 ) = ( TopOpen ‘ 𝐹 ) | |
| 17 | 16 1 2 | xmstopn | ⊢ ( 𝐹 ∈ ∞MetSp → ( TopOpen ‘ 𝐹 ) = ( MetOpen ‘ 𝐷 ) ) |
| 18 | 17 | 3ad2ant2 | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → ( TopOpen ‘ 𝐹 ) = ( MetOpen ‘ 𝐷 ) ) |
| 19 | 14 15 18 | 3eqtr4rd | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → ( TopOpen ‘ 𝐹 ) = ( unifTop ‘ 𝑈 ) ) |
| 20 | 1 3 16 | isusp | ⊢ ( 𝐹 ∈ UnifSp ↔ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( TopOpen ‘ 𝐹 ) = ( unifTop ‘ 𝑈 ) ) ) |
| 21 | 12 19 20 | sylanbrc | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → 𝐹 ∈ UnifSp ) |