This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The uniform space generated by a complete metric is a complete uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cmetcusp | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) → ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ∈ CUnifSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmetmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 2 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 3 | xmetpsmet | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) |
| 5 | 4 | anim2i | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) → ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) ) |
| 6 | metuust | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( metUnif ‘ 𝐷 ) ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 7 | eqid | ⊢ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) = ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) | |
| 8 | 7 | tususp | ⊢ ( ( metUnif ‘ 𝐷 ) ∈ ( UnifOn ‘ 𝑋 ) → ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ∈ UnifSp ) |
| 9 | 5 6 8 | 3syl | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) → ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ∈ UnifSp ) |
| 10 | simpll | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ∧ 𝑐 ∈ ( Fil ‘ ( Base ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) ∧ 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) → ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ) | |
| 11 | 10 | simprd | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ∧ 𝑐 ∈ ( Fil ‘ ( Base ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) ∧ 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
| 12 | 1 2 | syl | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 13 | 12 | ad3antlr | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ∧ 𝑐 ∈ ( Fil ‘ ( Base ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) ∧ 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 14 | 7 | tusbas | ⊢ ( ( metUnif ‘ 𝐷 ) ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ( Base ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) |
| 15 | 14 | fveq2d | ⊢ ( ( metUnif ‘ 𝐷 ) ∈ ( UnifOn ‘ 𝑋 ) → ( Fil ‘ 𝑋 ) = ( Fil ‘ ( Base ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) |
| 16 | 15 | eleq2d | ⊢ ( ( metUnif ‘ 𝐷 ) ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑐 ∈ ( Fil ‘ 𝑋 ) ↔ 𝑐 ∈ ( Fil ‘ ( Base ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) ) |
| 17 | 5 6 16 | 3syl | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) → ( 𝑐 ∈ ( Fil ‘ 𝑋 ) ↔ 𝑐 ∈ ( Fil ‘ ( Base ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) ) |
| 18 | 17 | biimpar | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ∧ 𝑐 ∈ ( Fil ‘ ( Base ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) → 𝑐 ∈ ( Fil ‘ 𝑋 ) ) |
| 19 | 18 | adantr | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ∧ 𝑐 ∈ ( Fil ‘ ( Base ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) ∧ 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) → 𝑐 ∈ ( Fil ‘ 𝑋 ) ) |
| 20 | 7 | tususs | ⊢ ( ( metUnif ‘ 𝐷 ) ∈ ( UnifOn ‘ 𝑋 ) → ( metUnif ‘ 𝐷 ) = ( UnifSt ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) |
| 21 | 20 | fveq2d | ⊢ ( ( metUnif ‘ 𝐷 ) ∈ ( UnifOn ‘ 𝑋 ) → ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) = ( CauFilu ‘ ( UnifSt ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) |
| 22 | 5 6 21 | 3syl | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) → ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) = ( CauFilu ‘ ( UnifSt ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) |
| 23 | 22 | eleq2d | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) → ( 𝑐 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ↔ 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) ) |
| 24 | 23 | biimpar | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ∧ 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) → 𝑐 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) |
| 25 | 24 | adantlr | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ∧ 𝑐 ∈ ( Fil ‘ ( Base ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) ∧ 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) → 𝑐 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) |
| 26 | cfilucfil2 | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝑐 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ↔ ( 𝑐 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑐 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) | |
| 27 | 5 26 | syl | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) → ( 𝑐 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ↔ ( 𝑐 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑐 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) |
| 28 | 27 | simplbda | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ∧ 𝑐 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑐 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) |
| 29 | 10 25 28 | syl2anc | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ∧ 𝑐 ∈ ( Fil ‘ ( Base ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) ∧ 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑐 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) |
| 30 | iscfil | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑐 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝑐 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑐 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) | |
| 31 | 30 | biimpar | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑐 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑐 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) → 𝑐 ∈ ( CauFil ‘ 𝐷 ) ) |
| 32 | 13 19 29 31 | syl12anc | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ∧ 𝑐 ∈ ( Fil ‘ ( Base ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) ∧ 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) → 𝑐 ∈ ( CauFil ‘ 𝐷 ) ) |
| 33 | eqid | ⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) | |
| 34 | 33 | cmetcvg | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑐 ∈ ( CauFil ‘ 𝐷 ) ) → ( ( MetOpen ‘ 𝐷 ) fLim 𝑐 ) ≠ ∅ ) |
| 35 | 11 32 34 | syl2anc | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ∧ 𝑐 ∈ ( Fil ‘ ( Base ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) ∧ 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) → ( ( MetOpen ‘ 𝐷 ) fLim 𝑐 ) ≠ ∅ ) |
| 36 | eqid | ⊢ ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) = ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) | |
| 37 | 7 36 | tustopn | ⊢ ( ( metUnif ‘ 𝐷 ) ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) = ( TopOpen ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) |
| 38 | 5 6 37 | 3syl | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) → ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) = ( TopOpen ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) |
| 39 | 12 | anim2i | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) → ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ) |
| 40 | xmetutop | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) = ( MetOpen ‘ 𝐷 ) ) | |
| 41 | 39 40 | syl | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) → ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) = ( MetOpen ‘ 𝐷 ) ) |
| 42 | 38 41 | eqtr3d | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) → ( TopOpen ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) = ( MetOpen ‘ 𝐷 ) ) |
| 43 | 42 | oveq1d | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) → ( ( TopOpen ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) fLim 𝑐 ) = ( ( MetOpen ‘ 𝐷 ) fLim 𝑐 ) ) |
| 44 | 43 | neeq1d | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) → ( ( ( TopOpen ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) fLim 𝑐 ) ≠ ∅ ↔ ( ( MetOpen ‘ 𝐷 ) fLim 𝑐 ) ≠ ∅ ) ) |
| 45 | 44 | biimpar | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ∧ ( ( MetOpen ‘ 𝐷 ) fLim 𝑐 ) ≠ ∅ ) → ( ( TopOpen ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) fLim 𝑐 ) ≠ ∅ ) |
| 46 | 10 35 45 | syl2anc | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ∧ 𝑐 ∈ ( Fil ‘ ( Base ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) ∧ 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) → ( ( TopOpen ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) fLim 𝑐 ) ≠ ∅ ) |
| 47 | 46 | ex | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ∧ 𝑐 ∈ ( Fil ‘ ( Base ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ) → ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) → ( ( TopOpen ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) fLim 𝑐 ) ≠ ∅ ) ) |
| 48 | 47 | ralrimiva | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) → ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) → ( ( TopOpen ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) fLim 𝑐 ) ≠ ∅ ) ) |
| 49 | iscusp | ⊢ ( ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ∈ CUnifSp ↔ ( ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ∈ UnifSp ∧ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) ) → ( ( TopOpen ‘ ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ) fLim 𝑐 ) ≠ ∅ ) ) ) | |
| 50 | 9 48 49 | sylanbrc | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) → ( toUnifSp ‘ ( metUnif ‘ 𝐷 ) ) ∈ CUnifSp ) |