This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the uniform set of a complete metric space is the uniform structure generated by its metric, then it is a complete uniform space. (Contributed by Thierry Arnoux, 15-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmetcusp1.x | |- X = ( Base ` F ) |
|
| cmetcusp1.d | |- D = ( ( dist ` F ) |` ( X X. X ) ) |
||
| cmetcusp1.u | |- U = ( UnifSt ` F ) |
||
| Assertion | cmetcusp1 | |- ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) -> F e. CUnifSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmetcusp1.x | |- X = ( Base ` F ) |
|
| 2 | cmetcusp1.d | |- D = ( ( dist ` F ) |` ( X X. X ) ) |
|
| 3 | cmetcusp1.u | |- U = ( UnifSt ` F ) |
|
| 4 | cmsms | |- ( F e. CMetSp -> F e. MetSp ) |
|
| 5 | msxms | |- ( F e. MetSp -> F e. *MetSp ) |
|
| 6 | 4 5 | syl | |- ( F e. CMetSp -> F e. *MetSp ) |
| 7 | 1 2 3 | xmsusp | |- ( ( X =/= (/) /\ F e. *MetSp /\ U = ( metUnif ` D ) ) -> F e. UnifSp ) |
| 8 | 6 7 | syl3an2 | |- ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) -> F e. UnifSp ) |
| 9 | simpl3 | |- ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> U = ( metUnif ` D ) ) |
|
| 10 | 9 | fveq2d | |- ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> ( CauFilU ` U ) = ( CauFilU ` ( metUnif ` D ) ) ) |
| 11 | 10 | eleq2d | |- ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> ( c e. ( CauFilU ` U ) <-> c e. ( CauFilU ` ( metUnif ` D ) ) ) ) |
| 12 | simpl1 | |- ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> X =/= (/) ) |
|
| 13 | 1 2 | cmscmet | |- ( F e. CMetSp -> D e. ( CMet ` X ) ) |
| 14 | cmetmet | |- ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) |
|
| 15 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 16 | 13 14 15 | 3syl | |- ( F e. CMetSp -> D e. ( *Met ` X ) ) |
| 17 | 16 | 3ad2ant2 | |- ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) -> D e. ( *Met ` X ) ) |
| 18 | 17 | adantr | |- ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> D e. ( *Met ` X ) ) |
| 19 | simpr | |- ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> c e. ( Fil ` X ) ) |
|
| 20 | cfilucfil4 | |- ( ( X =/= (/) /\ D e. ( *Met ` X ) /\ c e. ( Fil ` X ) ) -> ( c e. ( CauFilU ` ( metUnif ` D ) ) <-> c e. ( CauFil ` D ) ) ) |
|
| 21 | 12 18 19 20 | syl3anc | |- ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> ( c e. ( CauFilU ` ( metUnif ` D ) ) <-> c e. ( CauFil ` D ) ) ) |
| 22 | 11 21 | bitrd | |- ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> ( c e. ( CauFilU ` U ) <-> c e. ( CauFil ` D ) ) ) |
| 23 | eqid | |- ( MetOpen ` D ) = ( MetOpen ` D ) |
|
| 24 | 23 | iscmet | |- ( D e. ( CMet ` X ) <-> ( D e. ( Met ` X ) /\ A. c e. ( CauFil ` D ) ( ( MetOpen ` D ) fLim c ) =/= (/) ) ) |
| 25 | 24 | simprbi | |- ( D e. ( CMet ` X ) -> A. c e. ( CauFil ` D ) ( ( MetOpen ` D ) fLim c ) =/= (/) ) |
| 26 | 13 25 | syl | |- ( F e. CMetSp -> A. c e. ( CauFil ` D ) ( ( MetOpen ` D ) fLim c ) =/= (/) ) |
| 27 | eqid | |- ( TopOpen ` F ) = ( TopOpen ` F ) |
|
| 28 | 27 1 2 | xmstopn | |- ( F e. *MetSp -> ( TopOpen ` F ) = ( MetOpen ` D ) ) |
| 29 | 6 28 | syl | |- ( F e. CMetSp -> ( TopOpen ` F ) = ( MetOpen ` D ) ) |
| 30 | 29 | oveq1d | |- ( F e. CMetSp -> ( ( TopOpen ` F ) fLim c ) = ( ( MetOpen ` D ) fLim c ) ) |
| 31 | 30 | neeq1d | |- ( F e. CMetSp -> ( ( ( TopOpen ` F ) fLim c ) =/= (/) <-> ( ( MetOpen ` D ) fLim c ) =/= (/) ) ) |
| 32 | 31 | ralbidv | |- ( F e. CMetSp -> ( A. c e. ( CauFil ` D ) ( ( TopOpen ` F ) fLim c ) =/= (/) <-> A. c e. ( CauFil ` D ) ( ( MetOpen ` D ) fLim c ) =/= (/) ) ) |
| 33 | 26 32 | mpbird | |- ( F e. CMetSp -> A. c e. ( CauFil ` D ) ( ( TopOpen ` F ) fLim c ) =/= (/) ) |
| 34 | 33 | r19.21bi | |- ( ( F e. CMetSp /\ c e. ( CauFil ` D ) ) -> ( ( TopOpen ` F ) fLim c ) =/= (/) ) |
| 35 | 34 | ex | |- ( F e. CMetSp -> ( c e. ( CauFil ` D ) -> ( ( TopOpen ` F ) fLim c ) =/= (/) ) ) |
| 36 | 35 | 3ad2ant2 | |- ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) -> ( c e. ( CauFil ` D ) -> ( ( TopOpen ` F ) fLim c ) =/= (/) ) ) |
| 37 | 36 | adantr | |- ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> ( c e. ( CauFil ` D ) -> ( ( TopOpen ` F ) fLim c ) =/= (/) ) ) |
| 38 | 22 37 | sylbid | |- ( ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) /\ c e. ( Fil ` X ) ) -> ( c e. ( CauFilU ` U ) -> ( ( TopOpen ` F ) fLim c ) =/= (/) ) ) |
| 39 | 38 | ralrimiva | |- ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) -> A. c e. ( Fil ` X ) ( c e. ( CauFilU ` U ) -> ( ( TopOpen ` F ) fLim c ) =/= (/) ) ) |
| 40 | 1 3 27 | iscusp2 | |- ( F e. CUnifSp <-> ( F e. UnifSp /\ A. c e. ( Fil ` X ) ( c e. ( CauFilU ` U ) -> ( ( TopOpen ` F ) fLim c ) =/= (/) ) ) ) |
| 41 | 8 39 40 | sylanbrc | |- ( ( X =/= (/) /\ F e. CMetSp /\ U = ( metUnif ` D ) ) -> F e. CUnifSp ) |