This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " W is a complete uniform space." (Contributed by Thierry Arnoux, 15-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscusp2.1 | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| iscusp2.2 | ⊢ 𝑈 = ( UnifSt ‘ 𝑊 ) | ||
| iscusp2.3 | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | ||
| Assertion | iscusp2 | ⊢ ( 𝑊 ∈ CUnifSp ↔ ( 𝑊 ∈ UnifSp ∧ ∀ 𝑐 ∈ ( Fil ‘ 𝐵 ) ( 𝑐 ∈ ( CauFilu ‘ 𝑈 ) → ( 𝐽 fLim 𝑐 ) ≠ ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscusp2.1 | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 2 | iscusp2.2 | ⊢ 𝑈 = ( UnifSt ‘ 𝑊 ) | |
| 3 | iscusp2.3 | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | |
| 4 | iscusp | ⊢ ( 𝑊 ∈ CUnifSp ↔ ( 𝑊 ∈ UnifSp ∧ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑊 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) ) ) | |
| 5 | 1 | fveq2i | ⊢ ( Fil ‘ 𝐵 ) = ( Fil ‘ ( Base ‘ 𝑊 ) ) |
| 6 | 2 | fveq2i | ⊢ ( CauFilu ‘ 𝑈 ) = ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) |
| 7 | 6 | eleq2i | ⊢ ( 𝑐 ∈ ( CauFilu ‘ 𝑈 ) ↔ 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) ) |
| 8 | 3 | oveq1i | ⊢ ( 𝐽 fLim 𝑐 ) = ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) |
| 9 | 8 | neeq1i | ⊢ ( ( 𝐽 fLim 𝑐 ) ≠ ∅ ↔ ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) |
| 10 | 7 9 | imbi12i | ⊢ ( ( 𝑐 ∈ ( CauFilu ‘ 𝑈 ) → ( 𝐽 fLim 𝑐 ) ≠ ∅ ) ↔ ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) ) |
| 11 | 5 10 | raleqbii | ⊢ ( ∀ 𝑐 ∈ ( Fil ‘ 𝐵 ) ( 𝑐 ∈ ( CauFilu ‘ 𝑈 ) → ( 𝐽 fLim 𝑐 ) ≠ ∅ ) ↔ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑊 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) ) |
| 12 | 11 | anbi2i | ⊢ ( ( 𝑊 ∈ UnifSp ∧ ∀ 𝑐 ∈ ( Fil ‘ 𝐵 ) ( 𝑐 ∈ ( CauFilu ‘ 𝑈 ) → ( 𝐽 fLim 𝑐 ) ≠ ∅ ) ) ↔ ( 𝑊 ∈ UnifSp ∧ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑊 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) ) ) |
| 13 | 4 12 | bitr4i | ⊢ ( 𝑊 ∈ CUnifSp ↔ ( 𝑊 ∈ UnifSp ∧ ∀ 𝑐 ∈ ( Fil ‘ 𝐵 ) ( 𝑐 ∈ ( CauFilu ‘ 𝑈 ) → ( 𝐽 fLim 𝑐 ) ≠ ∅ ) ) ) |