This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given a metric D and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the Cauchy filters for the metric. (Contributed by Thierry Arnoux, 15-Dec-2017) (Revised by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfilucfil4 | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐶 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ↔ 𝐶 ∈ ( CauFil ‘ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfilucfil3 | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) ↔ 𝐶 ∈ ( CauFil ‘ 𝐷 ) ) ) | |
| 2 | cfilfil | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFil ‘ 𝐷 ) ) → 𝐶 ∈ ( Fil ‘ 𝑋 ) ) | |
| 3 | 2 | ex | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐶 ∈ ( CauFil ‘ 𝐷 ) → 𝐶 ∈ ( Fil ‘ 𝑋 ) ) ) |
| 4 | 3 | adantl | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( 𝐶 ∈ ( CauFil ‘ 𝐷 ) → 𝐶 ∈ ( Fil ‘ 𝑋 ) ) ) |
| 5 | 4 | pm4.71rd | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( 𝐶 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFil ‘ 𝐷 ) ) ) ) |
| 6 | 1 5 | bitrd | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFil ‘ 𝐷 ) ) ) ) |
| 7 | pm5.32 | ⊢ ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) → ( 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ↔ 𝐶 ∈ ( CauFil ‘ 𝐷 ) ) ) ↔ ( ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) ↔ ( 𝐶 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFil ‘ 𝐷 ) ) ) ) | |
| 8 | 6 7 | sylibr | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( 𝐶 ∈ ( Fil ‘ 𝑋 ) → ( 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ↔ 𝐶 ∈ ( CauFil ‘ 𝐷 ) ) ) ) |
| 9 | 8 | 3impia | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐶 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ↔ 𝐶 ∈ ( CauFil ‘ 𝐷 ) ) ) |