This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of the image of a closure. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnclsi.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | cnclsi | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnclsi.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | cntop1 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝐽 ∈ Top ) |
| 4 | cnvimass | ⊢ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ⊆ dom 𝐹 | |
| 5 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 6 | 1 5 | cnf | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
| 8 | 4 7 | fssdm | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ⊆ 𝑋 ) |
| 9 | simpr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ⊆ 𝑋 ) | |
| 10 | 7 | fdmd | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → dom 𝐹 = 𝑋 ) |
| 11 | 9 10 | sseqtrrd | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ⊆ dom 𝐹 ) |
| 12 | sseqin2 | ⊢ ( 𝑆 ⊆ dom 𝐹 ↔ ( dom 𝐹 ∩ 𝑆 ) = 𝑆 ) | |
| 13 | 11 12 | sylib | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → ( dom 𝐹 ∩ 𝑆 ) = 𝑆 ) |
| 14 | dminss | ⊢ ( dom 𝐹 ∩ 𝑆 ) ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) | |
| 15 | 13 14 | eqsstrrdi | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) |
| 16 | 1 | clsss | ⊢ ( ( 𝐽 ∈ Top ∧ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ⊆ 𝑋 ∧ 𝑆 ⊆ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) ) |
| 17 | 3 8 15 16 | syl3anc | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) ) |
| 18 | imassrn | ⊢ ( 𝐹 “ 𝑆 ) ⊆ ran 𝐹 | |
| 19 | 7 | frnd | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → ran 𝐹 ⊆ ∪ 𝐾 ) |
| 20 | 18 19 | sstrid | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐹 “ 𝑆 ) ⊆ ∪ 𝐾 ) |
| 21 | 5 | cncls2i | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐹 “ 𝑆 ) ⊆ ∪ 𝐾 ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑆 ) ) ) ) |
| 22 | 20 21 | syldan | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ ( 𝐹 “ 𝑆 ) ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑆 ) ) ) ) |
| 23 | 17 22 | sstrd | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑆 ) ) ) ) |
| 24 | 7 | ffund | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → Fun 𝐹 ) |
| 25 | 1 | clsss3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
| 26 | 2 25 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
| 27 | 26 10 | sseqtrrd | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ dom 𝐹 ) |
| 28 | funimass3 | ⊢ ( ( Fun 𝐹 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑆 ) ) ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑆 ) ) ) ) ) | |
| 29 | 24 27 28 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑆 ) ) ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑆 ) ) ) ) ) |
| 30 | 23 29 | mpbird | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐹 “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑆 ) ) ) |