This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The conjugation of an element of a normal subgroup is in the subgroup. (Contributed by Mario Carneiro, 4-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isnsg3.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| isnsg3.2 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| isnsg3.3 | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | nsgconj | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnsg3.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | isnsg3.2 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | isnsg3.3 | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | nsgsubg | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 6 | subgrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → 𝐺 ∈ Grp ) |
| 8 | simp2 | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → 𝐴 ∈ 𝑋 ) | |
| 9 | 1 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝑋 ) |
| 10 | 5 9 | syl | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → 𝑆 ⊆ 𝑋 ) |
| 11 | simp3 | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → 𝐵 ∈ 𝑆 ) | |
| 12 | 10 11 | sseldd | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → 𝐵 ∈ 𝑋 ) |
| 13 | 1 2 3 | grpaddsubass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) = ( 𝐴 + ( 𝐵 − 𝐴 ) ) ) |
| 14 | 7 8 12 8 13 | syl13anc | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) = ( 𝐴 + ( 𝐵 − 𝐴 ) ) ) |
| 15 | 1 2 3 | grpnpcan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐵 − 𝐴 ) + 𝐴 ) = 𝐵 ) |
| 16 | 7 12 8 15 | syl3anc | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝐵 − 𝐴 ) + 𝐴 ) = 𝐵 ) |
| 17 | 16 11 | eqeltrd | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝐵 − 𝐴 ) + 𝐴 ) ∈ 𝑆 ) |
| 18 | simp1 | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) | |
| 19 | 1 3 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 − 𝐴 ) ∈ 𝑋 ) |
| 20 | 7 12 8 19 | syl3anc | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐵 − 𝐴 ) ∈ 𝑋 ) |
| 21 | 1 2 | nsgbi | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐵 − 𝐴 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝐵 − 𝐴 ) + 𝐴 ) ∈ 𝑆 ↔ ( 𝐴 + ( 𝐵 − 𝐴 ) ) ∈ 𝑆 ) ) |
| 22 | 18 20 8 21 | syl3anc | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → ( ( ( 𝐵 − 𝐴 ) + 𝐴 ) ∈ 𝑆 ↔ ( 𝐴 + ( 𝐵 − 𝐴 ) ) ∈ 𝑆 ) ) |
| 23 | 17 22 | mpbid | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 + ( 𝐵 − 𝐴 ) ) ∈ 𝑆 ) |
| 24 | 14 23 | eqeltrd | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) ∈ 𝑆 ) |