This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgroup is normal iff the conjugation of all the elements of the subgroup is in the subgroup. (Contributed by Mario Carneiro, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isnsg3.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| isnsg3.2 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| isnsg3.3 | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | isnsg3 | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnsg3.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | isnsg3.2 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | isnsg3.3 | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | nsgsubg | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 5 | 1 2 3 | nsgconj | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) |
| 6 | 5 | 3expb | ⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) |
| 7 | 6 | ralrimivva | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) |
| 8 | 4 7 | jca | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ) |
| 9 | simpl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 10 | subgrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 11 | 10 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → 𝐺 ∈ Grp ) |
| 12 | simprll | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → 𝑧 ∈ 𝑋 ) | |
| 13 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 14 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 15 | 1 2 13 14 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) = ( 0g ‘ 𝐺 ) ) |
| 16 | 11 12 15 | syl2anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) = ( 0g ‘ 𝐺 ) ) |
| 17 | 16 | oveq1d | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) + 𝑤 ) = ( ( 0g ‘ 𝐺 ) + 𝑤 ) ) |
| 18 | 1 14 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ) |
| 19 | 11 12 18 | syl2anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ) |
| 20 | simprlr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → 𝑤 ∈ 𝑋 ) | |
| 21 | 1 2 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) + 𝑤 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑧 + 𝑤 ) ) ) |
| 22 | 11 19 12 20 21 | syl13anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑧 ) + 𝑤 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑧 + 𝑤 ) ) ) |
| 23 | 1 2 13 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + 𝑤 ) = 𝑤 ) |
| 24 | 11 20 23 | syl2anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ( ( 0g ‘ 𝐺 ) + 𝑤 ) = 𝑤 ) |
| 25 | 17 22 24 | 3eqtr3d | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑧 + 𝑤 ) ) = 𝑤 ) |
| 26 | 25 | oveq1d | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑧 + 𝑤 ) ) − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) = ( 𝑤 − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
| 27 | 1 2 3 14 11 20 12 | grpsubinv | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ( 𝑤 − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) = ( 𝑤 + 𝑧 ) ) |
| 28 | 26 27 | eqtrd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑧 + 𝑤 ) ) − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) = ( 𝑤 + 𝑧 ) ) |
| 29 | simprr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ( 𝑧 + 𝑤 ) ∈ 𝑆 ) | |
| 30 | simplr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) | |
| 31 | oveq1 | ⊢ ( 𝑥 = ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) → ( 𝑥 + 𝑦 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑦 ) ) | |
| 32 | id | ⊢ ( 𝑥 = ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) → 𝑥 = ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) | |
| 33 | 31 32 | oveq12d | ⊢ ( 𝑥 = ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) → ( ( 𝑥 + 𝑦 ) − 𝑥 ) = ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑦 ) − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
| 34 | 33 | eleq1d | ⊢ ( 𝑥 = ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) → ( ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑦 ) − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) ) |
| 35 | oveq2 | ⊢ ( 𝑦 = ( 𝑧 + 𝑤 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑦 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑧 + 𝑤 ) ) ) | |
| 36 | 35 | oveq1d | ⊢ ( 𝑦 = ( 𝑧 + 𝑤 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑦 ) − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) = ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑧 + 𝑤 ) ) − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
| 37 | 36 | eleq1d | ⊢ ( 𝑦 = ( 𝑧 + 𝑤 ) → ( ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + 𝑦 ) − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑧 + 𝑤 ) ) − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) ) |
| 38 | 34 37 | rspc2va | ⊢ ( ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑧 + 𝑤 ) ) − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) |
| 39 | 19 29 30 38 | syl21anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) + ( 𝑧 + 𝑤 ) ) − ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ∈ 𝑆 ) |
| 40 | 28 39 | eqeltrrd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ∧ ( 𝑧 + 𝑤 ) ∈ 𝑆 ) ) → ( 𝑤 + 𝑧 ) ∈ 𝑆 ) |
| 41 | 40 | expr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝑧 + 𝑤 ) ∈ 𝑆 → ( 𝑤 + 𝑧 ) ∈ 𝑆 ) ) |
| 42 | 41 | ralrimivva | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) → ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑧 + 𝑤 ) ∈ 𝑆 → ( 𝑤 + 𝑧 ) ∈ 𝑆 ) ) |
| 43 | 1 2 | isnsg2 | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝑧 + 𝑤 ) ∈ 𝑆 → ( 𝑤 + 𝑧 ) ∈ 𝑆 ) ) ) |
| 44 | 9 42 43 | sylanbrc | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) → 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 45 | 8 44 | impbii | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑆 ( ( 𝑥 + 𝑦 ) − 𝑥 ) ∈ 𝑆 ) ) |