This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group multiple function matches the scalar multiplication function. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmmulg.1 | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| clmmulg.2 | ⊢ ∙ = ( .g ‘ 𝑊 ) | ||
| clmmulg.3 | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| Assertion | clmmulg | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ∙ 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmmulg.1 | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | clmmulg.2 | ⊢ ∙ = ( .g ‘ 𝑊 ) | |
| 3 | clmmulg.3 | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 ∙ 𝐵 ) = ( 0 ∙ 𝐵 ) ) | |
| 5 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 · 𝐵 ) = ( 0 · 𝐵 ) ) | |
| 6 | 4 5 | eqeq12d | ⊢ ( 𝑥 = 0 → ( ( 𝑥 ∙ 𝐵 ) = ( 𝑥 · 𝐵 ) ↔ ( 0 ∙ 𝐵 ) = ( 0 · 𝐵 ) ) ) |
| 7 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∙ 𝐵 ) = ( 𝑦 ∙ 𝐵 ) ) | |
| 8 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 · 𝐵 ) = ( 𝑦 · 𝐵 ) ) | |
| 9 | 7 8 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∙ 𝐵 ) = ( 𝑥 · 𝐵 ) ↔ ( 𝑦 ∙ 𝐵 ) = ( 𝑦 · 𝐵 ) ) ) |
| 10 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 ∙ 𝐵 ) = ( ( 𝑦 + 1 ) ∙ 𝐵 ) ) | |
| 11 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 · 𝐵 ) = ( ( 𝑦 + 1 ) · 𝐵 ) ) | |
| 12 | 10 11 | eqeq12d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 ∙ 𝐵 ) = ( 𝑥 · 𝐵 ) ↔ ( ( 𝑦 + 1 ) ∙ 𝐵 ) = ( ( 𝑦 + 1 ) · 𝐵 ) ) ) |
| 13 | oveq1 | ⊢ ( 𝑥 = - 𝑦 → ( 𝑥 ∙ 𝐵 ) = ( - 𝑦 ∙ 𝐵 ) ) | |
| 14 | oveq1 | ⊢ ( 𝑥 = - 𝑦 → ( 𝑥 · 𝐵 ) = ( - 𝑦 · 𝐵 ) ) | |
| 15 | 13 14 | eqeq12d | ⊢ ( 𝑥 = - 𝑦 → ( ( 𝑥 ∙ 𝐵 ) = ( 𝑥 · 𝐵 ) ↔ ( - 𝑦 ∙ 𝐵 ) = ( - 𝑦 · 𝐵 ) ) ) |
| 16 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∙ 𝐵 ) = ( 𝐴 ∙ 𝐵 ) ) | |
| 17 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 · 𝐵 ) = ( 𝐴 · 𝐵 ) ) | |
| 18 | 16 17 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∙ 𝐵 ) = ( 𝑥 · 𝐵 ) ↔ ( 𝐴 ∙ 𝐵 ) = ( 𝐴 · 𝐵 ) ) ) |
| 19 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 20 | 1 19 2 | mulg0 | ⊢ ( 𝐵 ∈ 𝑉 → ( 0 ∙ 𝐵 ) = ( 0g ‘ 𝑊 ) ) |
| 21 | 20 | adantl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) → ( 0 ∙ 𝐵 ) = ( 0g ‘ 𝑊 ) ) |
| 22 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 23 | 1 22 3 19 | clm0vs | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) → ( 0 · 𝐵 ) = ( 0g ‘ 𝑊 ) ) |
| 24 | 21 23 | eqtr4d | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) → ( 0 ∙ 𝐵 ) = ( 0 · 𝐵 ) ) |
| 25 | oveq1 | ⊢ ( ( 𝑦 ∙ 𝐵 ) = ( 𝑦 · 𝐵 ) → ( ( 𝑦 ∙ 𝐵 ) ( +g ‘ 𝑊 ) 𝐵 ) = ( ( 𝑦 · 𝐵 ) ( +g ‘ 𝑊 ) 𝐵 ) ) | |
| 26 | clmgrp | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ Grp ) | |
| 27 | 26 | grpmndd | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ Mnd ) |
| 28 | 27 | ad2antrr | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑊 ∈ Mnd ) |
| 29 | simpr | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑦 ∈ ℕ0 ) | |
| 30 | simplr | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → 𝐵 ∈ 𝑉 ) | |
| 31 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 32 | 1 2 31 | mulgnn0p1 | ⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑦 + 1 ) ∙ 𝐵 ) = ( ( 𝑦 ∙ 𝐵 ) ( +g ‘ 𝑊 ) 𝐵 ) ) |
| 33 | 28 29 30 32 | syl3anc | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 + 1 ) ∙ 𝐵 ) = ( ( 𝑦 ∙ 𝐵 ) ( +g ‘ 𝑊 ) 𝐵 ) ) |
| 34 | simpll | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑊 ∈ ℂMod ) | |
| 35 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 36 | 22 35 | clmzss | ⊢ ( 𝑊 ∈ ℂMod → ℤ ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 37 | 36 | ad2antrr | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → ℤ ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 38 | nn0z | ⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ ) | |
| 39 | 38 | adantl | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑦 ∈ ℤ ) |
| 40 | 37 39 | sseldd | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 41 | 1zzd | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → 1 ∈ ℤ ) | |
| 42 | 37 41 | sseldd | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 43 | 1 22 3 35 31 | clmvsdir | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐵 ∈ 𝑉 ) ) → ( ( 𝑦 + 1 ) · 𝐵 ) = ( ( 𝑦 · 𝐵 ) ( +g ‘ 𝑊 ) ( 1 · 𝐵 ) ) ) |
| 44 | 34 40 42 30 43 | syl13anc | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 + 1 ) · 𝐵 ) = ( ( 𝑦 · 𝐵 ) ( +g ‘ 𝑊 ) ( 1 · 𝐵 ) ) ) |
| 45 | 1 3 | clmvs1 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) → ( 1 · 𝐵 ) = 𝐵 ) |
| 46 | 45 | adantr | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → ( 1 · 𝐵 ) = 𝐵 ) |
| 47 | 46 | oveq2d | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 · 𝐵 ) ( +g ‘ 𝑊 ) ( 1 · 𝐵 ) ) = ( ( 𝑦 · 𝐵 ) ( +g ‘ 𝑊 ) 𝐵 ) ) |
| 48 | 44 47 | eqtrd | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 + 1 ) · 𝐵 ) = ( ( 𝑦 · 𝐵 ) ( +g ‘ 𝑊 ) 𝐵 ) ) |
| 49 | 33 48 | eqeq12d | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 + 1 ) ∙ 𝐵 ) = ( ( 𝑦 + 1 ) · 𝐵 ) ↔ ( ( 𝑦 ∙ 𝐵 ) ( +g ‘ 𝑊 ) 𝐵 ) = ( ( 𝑦 · 𝐵 ) ( +g ‘ 𝑊 ) 𝐵 ) ) ) |
| 50 | 25 49 | imbitrrid | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 ∙ 𝐵 ) = ( 𝑦 · 𝐵 ) → ( ( 𝑦 + 1 ) ∙ 𝐵 ) = ( ( 𝑦 + 1 ) · 𝐵 ) ) ) |
| 51 | 50 | ex | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) → ( 𝑦 ∈ ℕ0 → ( ( 𝑦 ∙ 𝐵 ) = ( 𝑦 · 𝐵 ) → ( ( 𝑦 + 1 ) ∙ 𝐵 ) = ( ( 𝑦 + 1 ) · 𝐵 ) ) ) ) |
| 52 | fveq2 | ⊢ ( ( 𝑦 ∙ 𝐵 ) = ( 𝑦 · 𝐵 ) → ( ( invg ‘ 𝑊 ) ‘ ( 𝑦 ∙ 𝐵 ) ) = ( ( invg ‘ 𝑊 ) ‘ ( 𝑦 · 𝐵 ) ) ) | |
| 53 | 26 | ad2antrr | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ ) → 𝑊 ∈ Grp ) |
| 54 | nnz | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) | |
| 55 | 54 | adantl | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ ) → 𝑦 ∈ ℤ ) |
| 56 | simplr | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ ) → 𝐵 ∈ 𝑉 ) | |
| 57 | eqid | ⊢ ( invg ‘ 𝑊 ) = ( invg ‘ 𝑊 ) | |
| 58 | 1 2 57 | mulgneg | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝐵 ∈ 𝑉 ) → ( - 𝑦 ∙ 𝐵 ) = ( ( invg ‘ 𝑊 ) ‘ ( 𝑦 ∙ 𝐵 ) ) ) |
| 59 | 53 55 56 58 | syl3anc | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ ) → ( - 𝑦 ∙ 𝐵 ) = ( ( invg ‘ 𝑊 ) ‘ ( 𝑦 ∙ 𝐵 ) ) ) |
| 60 | simpll | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ ) → 𝑊 ∈ ℂMod ) | |
| 61 | 36 | ad2antrr | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ ) → ℤ ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 62 | 61 55 | sseldd | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ ) → 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 63 | 1 22 3 57 35 60 56 62 | clmvsneg | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ ) → ( ( invg ‘ 𝑊 ) ‘ ( 𝑦 · 𝐵 ) ) = ( - 𝑦 · 𝐵 ) ) |
| 64 | 63 | eqcomd | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ ) → ( - 𝑦 · 𝐵 ) = ( ( invg ‘ 𝑊 ) ‘ ( 𝑦 · 𝐵 ) ) ) |
| 65 | 59 64 | eqeq12d | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ ) → ( ( - 𝑦 ∙ 𝐵 ) = ( - 𝑦 · 𝐵 ) ↔ ( ( invg ‘ 𝑊 ) ‘ ( 𝑦 ∙ 𝐵 ) ) = ( ( invg ‘ 𝑊 ) ‘ ( 𝑦 · 𝐵 ) ) ) ) |
| 66 | 52 65 | imbitrrid | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 ∙ 𝐵 ) = ( 𝑦 · 𝐵 ) → ( - 𝑦 ∙ 𝐵 ) = ( - 𝑦 · 𝐵 ) ) ) |
| 67 | 66 | ex | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) → ( 𝑦 ∈ ℕ → ( ( 𝑦 ∙ 𝐵 ) = ( 𝑦 · 𝐵 ) → ( - 𝑦 ∙ 𝐵 ) = ( - 𝑦 · 𝐵 ) ) ) ) |
| 68 | 6 9 12 15 18 24 51 67 | zindd | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ∈ ℤ → ( 𝐴 ∙ 𝐵 ) = ( 𝐴 · 𝐵 ) ) ) |
| 69 | 68 | 3impia | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ ℤ ) → ( 𝐴 ∙ 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 70 | 69 | 3com23 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ∙ 𝐵 ) = ( 𝐴 · 𝐵 ) ) |