This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication distributive law for subtraction. ( lmodsubdir analog.) (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmsubdir.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| clmsubdir.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| clmsubdir.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| clmsubdir.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| clmsubdir.m | ⊢ − = ( -g ‘ 𝑊 ) | ||
| clmsubdir.w | ⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) | ||
| clmsubdir.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | ||
| clmsubdir.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) | ||
| clmsubdir.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| Assertion | clmsubdir | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) · 𝑋 ) = ( ( 𝐴 · 𝑋 ) − ( 𝐵 · 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmsubdir.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | clmsubdir.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 3 | clmsubdir.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | clmsubdir.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | clmsubdir.m | ⊢ − = ( -g ‘ 𝑊 ) | |
| 6 | clmsubdir.w | ⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) | |
| 7 | clmsubdir.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | |
| 8 | clmsubdir.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) | |
| 9 | clmsubdir.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 10 | 3 4 | clmsub | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) ) |
| 11 | 6 7 8 10 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) ) |
| 12 | 11 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) · 𝑋 ) = ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) · 𝑋 ) ) |
| 13 | eqid | ⊢ ( -g ‘ 𝐹 ) = ( -g ‘ 𝐹 ) | |
| 14 | clmlmod | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) | |
| 15 | 6 14 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 16 | 1 2 3 4 5 13 15 7 8 9 | lmodsubdir | ⊢ ( 𝜑 → ( ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) · 𝑋 ) = ( ( 𝐴 · 𝑋 ) − ( 𝐵 · 𝑋 ) ) ) |
| 17 | 12 16 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) · 𝑋 ) = ( ( 𝐴 · 𝑋 ) − ( 𝐵 · 𝑋 ) ) ) |