This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zero times a vector is the zero vector. Equation 1a of Kreyszig p. 51. ( lmod0vs analog.) (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clm0vs.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| clm0vs.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| clm0vs.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| clm0vs.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| Assertion | clm0vs | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( 0 · 𝑋 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clm0vs.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | clm0vs.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | clm0vs.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | clm0vs.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 5 | 2 | clm0 | ⊢ ( 𝑊 ∈ ℂMod → 0 = ( 0g ‘ 𝐹 ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → 0 = ( 0g ‘ 𝐹 ) ) |
| 7 | 6 | oveq1d | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( 0 · 𝑋 ) = ( ( 0g ‘ 𝐹 ) · 𝑋 ) ) |
| 8 | clmlmod | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) | |
| 9 | eqid | ⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) | |
| 10 | 1 2 3 9 4 | lmod0vs | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 0g ‘ 𝐹 ) · 𝑋 ) = 0 ) |
| 11 | 8 10 | sylan | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 0g ‘ 𝐹 ) · 𝑋 ) = 0 ) |
| 12 | 7 11 | eqtrd | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( 0 · 𝑋 ) = 0 ) |