This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for scalar product (right-distributivity). ( lmodvsdir analog.) (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmvscl.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| clmvscl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| clmvscl.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| clmvscl.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| clmvsdir.a | ⊢ + = ( +g ‘ 𝑊 ) | ||
| Assertion | clmvsdir | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑄 + 𝑅 ) · 𝑋 ) = ( ( 𝑄 · 𝑋 ) + ( 𝑅 · 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmvscl.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | clmvscl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | clmvscl.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | clmvscl.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | clmvsdir.a | ⊢ + = ( +g ‘ 𝑊 ) | |
| 6 | 2 | clmadd | ⊢ ( 𝑊 ∈ ℂMod → + = ( +g ‘ 𝐹 ) ) |
| 7 | 6 | oveqd | ⊢ ( 𝑊 ∈ ℂMod → ( 𝑄 + 𝑅 ) = ( 𝑄 ( +g ‘ 𝐹 ) 𝑅 ) ) |
| 8 | 7 | oveq1d | ⊢ ( 𝑊 ∈ ℂMod → ( ( 𝑄 + 𝑅 ) · 𝑋 ) = ( ( 𝑄 ( +g ‘ 𝐹 ) 𝑅 ) · 𝑋 ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑄 + 𝑅 ) · 𝑋 ) = ( ( 𝑄 ( +g ‘ 𝐹 ) 𝑅 ) · 𝑋 ) ) |
| 10 | clmlmod | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) | |
| 11 | eqid | ⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) | |
| 12 | 1 5 2 3 4 11 | lmodvsdir | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑄 ( +g ‘ 𝐹 ) 𝑅 ) · 𝑋 ) = ( ( 𝑄 · 𝑋 ) + ( 𝑅 · 𝑋 ) ) ) |
| 13 | 10 12 | sylan | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑄 ( +g ‘ 𝐹 ) 𝑅 ) · 𝑋 ) = ( ( 𝑄 · 𝑋 ) + ( 𝑅 · 𝑋 ) ) ) |
| 14 | 9 13 | eqtrd | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑄 + 𝑅 ) · 𝑋 ) = ( ( 𝑄 · 𝑋 ) + ( 𝑅 · 𝑋 ) ) ) |